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Abstract

This paper develops a statistical framework of steady-state iden-
tities which enable us to match the distributions of durations found
in the micro-data to generalized Taylor and Calvo models of time-
dependent pricing. We illustrate the approach with the UK micro
CPI data for 1996-2009, and employ the pricing models in a simple
macromodel. We �nd that the Generalized Taylor Economy generates
a hump shaped response function, whilst the Generalized Calvo does
not.
JEL: E50.
Keywords: Price-spell, steady state, hazard rate, Calvo, Taylor.

�This research began when I was a visitor to the ECB in January 2002 and is a revised
version of ECB working paper 676 (2006). The �nancial assistance of the Foundation
Banque de France helped me in preparing this revision. I would like to thank Michael
Beenstock, Vitor Gaspar, Jurgen von Hagen, Engin Kara, Benoit Mojon, Herve Le Bihan,
Henri Pages, Adam Rei¤, Luigi Siciliani, Peter N Smith, John B Taylor, John Treble and
Mike Wickens for helpful clues in my quest. Thanks also to PhD students at York, Cardi¤
and Lisbon for their comments when I have given this as part of a PhD course on monetary
policy over the last 5 years. The paper has been given at seminars at York, Cardi¤, the
ECB, Banque de France, and the MMF conference (2006) and European Monetary Forum
(2008). I would like to thank Kun Tian and Peng Zhou for estimating the Hazard function,
and Yue Jiang for running the policy simulations. I have only myself to blame for any
remaining faults.

yCardi¤ Business School, Colum Drive, Cardi¤. CF10 3EU, dixonh@cardi¤.ac.uk.

1



Dynamic pricing and wage-setting models have become central to macro-
economic modelling in the new neoclassical synthesis approach. It has be-
come apparent that di¤erent models of pricing have di¤erent implications for
matters such as the persistence of output and in�ation to monetary shocks.
Di¤erent models of wage or price setting imply di¤erent distributions of dura-
tions of price-spells (throughout this paper, we will use "price" as a shorthand
for "wage and price"). In this paper we focus on the class of time or du-
ration dependent models of pricing, such as Calvo and Taylor, rather than
state-dependent models (Dotsey et al 1999, John and Wolman 2008). We
formulate a uni�ed framework for consistently understanding and comparing
these models and linking them to microdata on prices and wages (in this
paper we will talk exclusively about pricing and price-data, but exactly the
same approach can be applied to wages as in Dixon and Le Bihan (2011).
We start from the idea of modelling the class of all steady state distri-

butions of durations across a given population (in this case, the �rms that
set prices). In steady state there are four equivalent ways of describing this.
Three of these are well known and standard: the fourth is a new concept,
but one that is needed and is developed in this paper to link the data to the
economic theory. First, there is the distribution of durations: this treats
each price-spell as an individual element in the population. This descrip-
tion ignores the panel structure of the microdata, in which sequnences of
price-spells (trajectories) are generated by �rms. Second, there is the cross-
sectional distribution of ages: at a point in time, how long it has been since
the current price-spell began. This is like the population census. Third, we
can look at the distribution in terms of hazard rates or survival probabilities:
from the cross-section of ages, the probability of progressing from one age
to the next one. The main contribution of this paper is to introduce the
new concept of the cross-sectional distribution of completed price-spells (life-
times): this corresponds to the average completed price-spell across �rms
and hence in this context we call it the Distribution across �rms (DAF ).
We develop a transparent framework that allows us to move between these
concepts. The �rst three concepts (distribution of durations, cross-section of
ages and hazard rates) are of course very well understood in statistics, being
basic tools in demography, evolutionary biology and elsewhere. The fourth
concept, the cross-sectional distribution of completed durations is a new con-
cept. However, this concept is essential if we are to answer questions such as
what is the average price-spell across �rms and to apply these concepts to
understand and compare di¤erent models of pricing.
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Whilst all four ways of describing the data ared equivalent statistically,
only two of them are directly related to modelling price and wage setting.
The distribution of durations itself does not link easily to any theory of
price setting. However, the hazard function and the the cross sectional
DAF have direct application. In the Generalized Taylor Economy (GT )
(Taylor 1993, Coenen et al 2007, Dixon and Kara 2010, 2011), there are
many sectors with di¤erent price-spell lengths, and within each sector there
is a simple Taylor process. The simple Taylor economy where all contract
lengths are the same is a special case of the GT . The GT is linked to
the microdata by looking at the new cross-sectional DAF : any steady-state
distribution can be represented by a unique GT: In the Calvo approach, we
have a reset probability which may be constant (as in the classical Calvo
model) or duration dependent (Wolman 1999, Mash 2003 and 2004, Guer-
rieri 2006, Sheedy 2007, Paustian and von Hagen 2008). We show that
the Calvo model with duration-dependent reset probabilities (denoted as the
Generalized Calvo model GC) is linked to the microdata through the hazard
function: any hazard function can be represented by a unique GC. Hence,
both the GT and GC are coextensive with the set of all steady state distri-
butions: each possible steady state distribution has exactly one GC and one
GT which corresponds to it. When we look at an economy, we can choose
the GT and the GC to exactly match the empirical distribution found in the
data.
A great advantage of our approach is that we can move between the four

statistical descriptions: if our data is in the form of a "census" (ages at a point
in time) we can use the identites in this paper to generate both the hazard
function and the cross-sectional DAF. In this paper, we use the estimated
hazard function from UK CPI microdata with around 2 million price-spells to
construct the correspondingDAF . We are also able to compare the di¤erent
models of pricing for a given distribution of durations of price spells. This
enables us to isolate the precise e¤ect of the pricing model as opposed to the
di¤erences in the distribution of durations. For example, if we compare a
simple Taylor 4 model with a simple Calvo model with reset probability 0.25,
these will have completely di¤erent distributions: in one case all price-spells
have the same length, whilst in the other there is a distribution of lengths
from 1 period to in�nity. If we �nd that the same model with Taylor exhibits
di¤erent behavior to the corresponding Calvo, it is not clear whether it is
because the pricing models di¤er, or the distribution of spells di¤ers.
The framework in this paper also allows us to directly link microdata to
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models of wage and price setting. We can take a given distribution of price-
spells and model it as either a GT or a GC. We take UK CPI price data for
the period 1996-2006 described in Bunn and Ellis (2009, 2010a) and estimate
the hazard function from this data which we can use to calibrate a our models
of pricing: the resultant GT and GC have exactly the same distribution of
price-spells as the UK data. We take the sectoral data in Bunn and Ellis
(2010a) to model the UK as an 11-sector multiple Calvo model (MC)with
sector speci�c Calvo reset probabilties (as in Carvalho 2006 and Carvalho
and Nechio 2008) We are thus able to move directly from the microdata
to the three models of pricing. We are able to compare these three pricing
models in a simple model economy, enabling us to highlight the di¤erences
in the pricing model controlling for the distribution of price-spells. We are
also able to compare the GT and GC in the more complicated Smets and
Wouters (2003) model. What we �nd is that for this distribution at least,
the three pricing models are quite close in terms of the impulse-response
functions they generate in response to a monetary shock. In particular, the
GC and MC are quite similar. However, there can be di¤erences: with
the UK data we �nd that the GT has a hump shaped impulse-response for
in�ation, whilst the GC and MC do not. This re�ects the fact that in a
GT the �rms know how long their price-spell is due to last and in this sense
are more "myopic" in their pricing deicisions. We formalize this concept of
myopia in a precise concept of forward lookingnes and �nd that on average
when �rms reset their prices they are less forward looking in the GT model
with �xed contract lengths than in the equivalent GC where �rms that reset
prices do not know how long the price is going to last. We believe that this
is the key di¤erence between the Taylor and Calvo approaches to pricing,
and that it is this di¤erence that gives rise to di¤erent impulse-responses for
in�ation. In a GT , �rms with short price spells of one or two months will
just react to what is happening now when they set their prices, whereas all
�rms in the GC have to look ahead since there is a probability that the price
they set now might last a long time.
The existing literature linking price microdata to pricing models has

tended to focus on the frequencies of price change (i.e. the proportion of
�rms changing prices in a given month): see for example the US studies of
Bils and Klenow (2004), Klenow and Krystov (2008), Nakamura and Steins-
son (2008). This frequency can be linked to the Calvo reset probability
at some level. For example, Carvalho (2006) uses the highly disaggregated
sectoral data provided by Bils and Klenow (2004). However, whilst the
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frequency is an interesting statistic, you lose the information about the dis-
tribution. Certainly, the UK data does not have a distribution of price spells
that corresponds to what would be implied by the Calvo model. The Calvo
model has not performed well empirically: when you use it in macroeconomic
models it does not give good results in terms of impulse responses1. This
has given rise to the use of Calvo with indexation (for example Christiano et
al 2005, Smets and Wouters 2003). However, indexation just makes a bad
model worse. Although it gives better impulse response functions, it does so
at the cost being completely at odds with the microdata: with indexation
all prices adjust every period. Indeed, other pricing models share the defect
of implying all prices change every period: for example sticky information
(Mankiw and Reis 2002) and the rational inattention model of Mackowiak
and Weiderholt (2009)2. The approach adopted in this paper enables the
theory to be consistent with the micro evidence.
In section 1 we review the facts about the steady state distribution of

durations, ages and hazard rates. We then introduce the new concept of
the cross-sectional distribution of durations across �rms and show how all
four concepts are related by simple formulae which are spreadsheet friendly
and provide some simple examples. In section 2, we de�ne our models of
pricing and show that the GC and GT are consistent with any distribution
of price-spells. In section 3 we study the UK distribution of durations and
in section 4 use the UK data to calibrate the pricing models in both a simple
macroeconomy and the more complex Smets and Wouters (2003) model. .

1 Steady State Distributions of Durations across
Firms.

We will consider the steady-state demographics of price-spells in terms of
their durations. The lifetime of a price-spell is how long it lasts from its
start to its �nish, a completed duration. There is a continuum of agents f
(we will call them �rms here), which set prices (or wages), represented by the
unit interval f 2 [0; 1] : Time is discrete and in�nite t 2 Z+ = f0; 1; 2:::1g :A

1For a more detailed discussion, see Dixon and Kara (2010, 2011).
2Both of these models assume that the �rm chooses a trajectory of prices (i.e. a

sequence of di¤erent prices), and that due to "sticky information" or "rational inattention"
these plans become more out of date leading to a gap between the current optimal price
and what was expected to be the optimal price when the price was planned.
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price event (or price-quote) is a price set by a particular �rm at a particular
time: pft. A price spell is a duration, a sequence of consecutive periods
that have the same price. For every price event pair ft; fg we can assign
an integer d(t; f) which is the price spell duration of which the price event is
part of. Furthermore, we can de�ne the subset of reset price events, when
�rms set a new price:

R = f(t; f) : pft 6= pft�1g � Z+ � [0; 1] (1)

The distribution of durations is derived from the set R. Let the longest
duration3 be F <1: Then we can de�ne F subsets of R

R(i) = f(t; f) 2 R : d(t; f) = ig (2)

Thus R(i) gives us the subset of durations of length i. The distribution of
durations is simply the proportions of all durations having length i = 1:::F :

�d =
�
�di
	F
i=1
2 �F�1

where �F�1 is the F � 1 unit simplex with
PF

i=1 �
d
i = 1 and �di � 0. In

steady-state this simpli�es, since the distribution of durations of new price-
spells is the same each period, we can take any "representative" t > F and
de�ne

�di = �
d
i (t) =

R 1
0
I((f; t) 2 R(i))dfR 1
0
I((f; t) 2 R)df

Where I is an index function that takes the value 1 if (at our chosen t) price
event (f; t) is in the relevant set, 0 otherwise.
In steady-state the distribution of durations is the same as the distribution

of durations taken over the subset of reset prices (new price spells). To see
why, in steady state each period t a set of new price-spells comes into being,
and set of price spells end. In steady state, the new starter price spells will
have exactly the same distribution of completed durations as the old price
spells �nishing. The whole population of price-spells over time will simply
be the summation over all of the generations of price-spells. Since each
generation has the same distribution, the distribution of price-spell durations
taken as a whole is exactly the same as the distribution of new price spells
in any one period.

3The �niteness of F is merely for convenience and has no importance since it can be
set arbitrarily large.
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1.1 Ages.

The age of the price-spell of �mr f at time t is de�ned as the period of time
that has elapsed since the price spell started A(f; t). Since we have integer
time, we adopt the convention that the minimum age is 1. Let us de�ne the
subset of �rms at time t that are of age A = j.

j(t) = ff 2 [0; 1] : A(f; t) = jg

Then the proportion of �rms aged j at t is for all t > F

�Aj = �
A
j (t) =

Z 1

0

I ((f; t) 2 j(t)) :df

The steady-state distribution of ages is necessarily monotonic: you cannot
have more old price-spells than younger, since to become old you must �rst
be young. Hence the set of all possible steady state age distributions is given
by:

�F�1
M =

�
�A 2 �F�1 : �Aj � �Aj+1

	
where the subscript M refers to (weak) monotonicity.

1.2 Hazard Rate.

An alternative way of looking at the steady state distribution of durations
and the cross-section of ages is in terms of the hazard rate. The hazard
rate at a particular age is the proportion of spells at age i which do not last
any longer (spells which end at age i, people who die at age i). Hence the
hazard rate can be de�ned in terms of the distribution of ages in steady-state
�A 2 �F�1

M : the corresponding vector of hazard rates h2 [0; 1)F�1 (this is
called the hazard function or hazard pro�le) is given by:

hi =
�Ai � �Ai+1

�Ai
; i = 1::: (F � 1) (3)

Since the maximum length4 is F; without loss of generality we set hF =
1. Corresponding to the idea of a hazard function is that of the survival

4If hi = 1 for some i < F , then i is the maximum duration and subsequent hazard
rates become irrelevant. This leads to trivial non-uniqueness. We therefore de�ne F as
the shortest duration with a reset probability of 1:
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probability5, the probability at birth that the price survives for at least i
periods, with S1 = 1 and for i > 1

Si = �
i�1
�=1(1� h�) (4)

and we de�ne the sum of survival probabilities �S and its reciprocal �h :

�S =
PF

i=1 Si
�h = ��1S (5)

The survival function is the F vector of survival probabilities (S1; S2; :::SF ):
Clearly, we can invert (3), hence relating the age distribution to the haz-

ard function:

Observation 1 given h2 [0; 1)F�1; there exists a unique corresponding age
pro�le �A 2 �F�1

M given by:

�Ai =
�hSi i = 1:::F .

Given the �ow of new contracts �h, the proportion surviving to age i
is Si : �h = ��1S ensures adding up. From the de�nition of hazard rates
and Observation 1 we can move from an age distribution �s 2 �F�1

M to the
hazard pro�le and vice versa.6

Observation 2 given h2 [0; 1)F�1; there exists a unique corresponding dis-
tribution of durations �d 2 �F�1 given by:

5The Hazard rate can also be de�ned in terms of the Survival function.

hi =
Si � Si+1

Si

For the relationship between continouous and discrete time used here see Kiefer (1988)
and Fougere et al (2007). In continuous time,

h(t) =
S0(t)

S(t)

whilst in discrete time we take S0as �S: Note that whilst in continuous time the hazard
rate can be be larger than 1, the discrete time hi cannot be larger than 1.

6 This relationship is one of the building blocks of Life Tables (Chiang 1984), which
are put to a variety of uses by demographers, actuaries and biologists. Dixon and Siciliani
(2009) apply the identity to hospital waiting lists in the UK to derive the hazards and
corresponding distribution of completed durations.
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�di = Sihi i = 1:::F .

The proportion of price-spells of duration i is the proportion surviving i
periods and no longer. Hence there is a unique 1 � 1 relationship between
elements of the set of possible duration distributions and the set of possible
hazard pro�les.

observation 3. For any �d 2 �F�1
M , the corresponding cross-section of ages

�A 2 �F�1
M is given by

�Ai =
�h

hi
�di

and vice-versa.

1.3 The cross-sectional distribution of Completed Price-
spells across Firms.

The steady-state age distribution �A 2 �F�1
M , distribution of durations �d 2

�F�1 or hazard pro�le h2 [0; 1]F�1 are di¤erent ways of looking at the same
object: a panel of price events. Each row of the panel is a trajectory of
prices corresponding to a particular �rm. Each column is a cross-section
of all of the prices set by �rms at a point in time. We now introduce a
fourth distribution: it is a cross-sectional distribution of completed durations
or lifetimes across �rms � 2 �F�1. In e¤ect, we take a representative t, and
for each �rm we see the completed price-spell duration at that time d(f; t):
If we de�ne the set of �rms at time t who will have a completed price spell
of i periods7

R(i; t) = ff 2 [0; 1] : d(t; f) = ig ; (6)

then the proportion of �rms at time t with a completed duration of i; �i is
de�ned by:

�i = �i (t) =

Z 1

0

I ((f; t) 2 R(i; t)) df

Under the steady-state assumption �i is constant over time, and hence we
omit the time indicator.
We can move from the distribution of ages to the distribution of completed

contract lengths across �rms:
7Note that R(i; t) is de�ned as a subset of �rms f at a point in time. It di¤ers from

R(i) which from (2) is a subset of pairs (t; f) taken across time and �rms.
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Proposition 1 Consider a steady-state age distribution �A 2 �F�1
M . There

exists a unique distribution of lifetimes across �rms � 2 �F�1 which corre-
sponds to �A, where

�1 = �A1 � �A2 (7)

�i = i
�
�Ai � �Ai+1

�
::

�F = F�AF

All proofs are in the appendix. Since there is a 1-1 mapping from age to
lifetimes, we can compute the distribution of lifetimes from ages:

Corollary 1 Given a distribution of steady-state completed lifetimes across
�rms, � 2 �F�1, there exists a unique �A 2 �F�1

M corresponding to �

�Aj =
FX
i=j

�i
i

j = 1:::F (8)

The intuition behind Proposition 1 and the Corollary is clear. In a
steady state, each period must look the same in terms of the distribution of
ages. This implies that if we look at the i period price-spells, a proportion
of i�1 must be renewed each period. Thus if we have 10 period contracts,
10% of these must come up for renewal each period. This implies that the
proportion of contracts coming up for renewal each period (which have age
1) is:

�A1 =
1X
i=1

�i
i

The proportion of contracts aged 2 is the set of contracts that were reset last
period (�s1), less the ones that only last one period (�1) and so on. The set
of all possible steady-state distributions of durations can be characterized
either by the set of all possible age distributions: �A 2 �F�1

M or the set of
all possible lifetime distributions across �rms � 2 �F�1: They are just two
di¤erent ways of looking at the same thing.
Proposition 1 and its corollary show that there is an exhaustive and 1-1

relationship between steady state age distributions and lifetime distributions.
Now, since we know that there is also a 1-1 relation between Hazard rates
and age distributions, we can also see that there will be a 1-1 relationship
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between completed contract lifetimes and hazard rates. First, we can ask
what distribution of completed contract durations corresponds to a given
vector of hazard rates. We can simply take observation 1 to transform the
hazards into the age distribution, and then apply Proposition 1.

Corollary 2 let h2 [0; 1)F�1: The distribution of lifetimes across �rms cor-
responding to h is:

�i = �h:i:hi:Si: i = 1:::F (9)

The �ow of new contracts is �s1 = �h each period. To survive for exactly
i periods, you have to survive to period i which happens with probability Si,
and then start a new contract which happens with probability hi. Hence
from a single cohort �h:hi:Si will have contracts that last for exactly i periods.
We then sum over the i cohorts (to include all of the contracts which are at
various stages of moving towards the �nal period i) to get the expression.
We can also consider the reverse question: for a given distribution of

completed contract lengths �;what is the corresponding pro�le of hazard
rates? From Corollary 2, note that (9) is a recursive structure relating �i
and hi: �i only depends on the values of hs for s � i.
Corollary 3 Consider a distribution of contract lengths across �rms given

by � 2 �F�1. The corresponding hazard pro�le that will generate
this distribution in steady state is given by h2 [0; 1)F�1 where:

hi =
�i
i

 
FX
j=i

aj
j

!�1
Corollary 4. For completeness, we can also ask for a given cross-section

DAF � 2 �F�1; what is the corresponding distribution of durations
�d 2 �F�1 is:

�di =
�i
i:�h

(10)

This follows directly form the comparison of (9) and observation 2. Clearly,
by de�nition, the distribution of durations is the same as the distribution
across �rms resetting prices (new price-spells). The more frequent price
setters (shorter price-spells) have a higher representation relative to longer
price-spells. Note that the rhs denominator of (10) is the product of the
contract length and the proportion of �rms resetting price. For the values of
i < �h�1, the share of the duration i is greater across contracts than �rms: for
larger i > �h�1 the share across contracts is less than the share across �rms.
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1.4 Examples.

The above Propositions and corollaries enable us to move between the four
di¤erent ways of describing the same underlying distribution of price-spell
durations in the panel. We will illustrate this with two simple examples
giving

�
�ai ; �i; �

d
i ; hi

�F
i=1

for two simple distributions.

Example 1: Simple Taylor 4.

h1 = 0 �A1 =
1
4
�1 = �

d
1 = 0

h2 = 0 �A2 =
1
4
�2 = �

d
2 = 0

h3 = 0 �A3 =
1
4
�3 = �

d
3 = 0

h4 = 1 �A4 =
1
4
�4 = �

d
4 = 1

�h = 1
4

�A = 5
2

�T = �d = 4

A simple lesson can be derived from this example. When all price-
spells have the same length, the distribution of durations is the same as
the distribution across �rms and �T = �d. In general, the cross-sectional
distribution f�ig weights longer price-spells more heavily

�
�di
	
, so that �T � �d

with a strict inequality if all price-spells do not have the same length.

Example 2: Simple Calvo The simple Calvo model most naturally relates
to the hazard rate approach to viewing the steady state distribution
of durations: it has a constant reset probability �h (the hazard rate) in
any period that the �rm will be able to review and if so desired reset
its price. This reset probability is exogenous and does not depend on
how long the current price has been in place. The distribution of ages
of price-spells is

�Ai =
�h
�
1� �h

�i�1
: i = 1:::1

which has mean �A =
P1

i=1 �
A
i :i = !�1. Applying Proposition 1(a)

gives us the steady-state distribution of completed contract lengths i
across �rms:

�i = �h
2i
�
1� �h

�i�1
: i = 1:::1 (11)

which has mean �T =
�
2�h�1

�
�1 (see Dixon and Kara 2006 Proposition

1). We illustrate the simple Calvo model with �h = 0:25.
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�h1 = 0:25 �1 = 0:0625 �d1 = 0:25
�h2 = 0:25 �2 = 0:09375 �d2 = 0:1875
�h3 = 0:25 �3 = 0:10546875 �d3 = 0:1406
�h4 = 0:25 �4 = 0:10546875 �d4 = 0:1052
�hi = 0:25 �i = (0:25)

2 i (0:75)i�1 �di = �
A
i

�h = 0:25 �T = 7 �d = �A = 4

Note that the simple Calvo model has a very special property: the dis-
tribution of ages is the same as the distribution of durations: substituting
(11) into (10) yields �Ai = �di i = 1:::1, so that the mean age of price-
spells across �rms equals the mean lifetime across new contracts and is the
reciprocal of the reset probability. Due to the interruption bias inherent in
the age distribution, we have in general �T > �A unless F = 1 in which case
�T = �A = 1. In general, we can have �d > �A or �d < �A. The age distribution
is length biased like the DAF , being a cross-sectional distribution, which
weights longer price-spells more heavily. The interruption bias acts in the
opposite direction, since the age-distribution measures incomplete price-spell
durations. In the Calvo model, these two e¤ects exactly o¤set each other.
However, it is easy to see that we can construct examples where this strict
equality can be broken in either direction (see Dixon and Siciliani 2009 for
examples).

2 Pricing Models with steady state distribu-
tions of durations across �rms.

Having derived a uni�ed framework for understanding the set of all possi-
ble steady state distributions of durations across �rms, we can now see how
this can be used to understand commonly used models of pricing behavior.
Indeed, we can see how each pricing theory relates to the whole set of pos-
sible steady-state distributions. There are now several studies using micro
data: in particular the In�ation Persistence Network (IPN) across the euro
area has been particularly comprehensive8: Alvarez and Hernando (2006) for
Spain, Veronese et al (2005) for Italy, Baudry et al (2007) for France and
Ho¤man and Kurz-Kim (2006) for Germany. For the US we have Klenow

8See Dhyne et al (2006) for a summary of the IPN�s �ndings. Alvarez (2008) also
provides a useful summary.
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and Krystov (2008), Nakamura and Steinsson (2008) and for the UK Bunn
and Ellis (2009, 2010). CPI microdata is in e¤ect a (balanced) panel on the
prices of individual products sold at individual outlets. They have trajecto-
ries for prices: sequences of price spells for a product at an individual outlet.
We can think of each trajectory as analogous to the sequence of price spells
for an individual "�rm" in the context of this paper: of course the analogy
is not exact since the retailers will in the most part not be the producers.
All of these studies cover the period of the Great Moderation: there is low
and stable in�ation for which the assumption of steady-state is particularly
appropriate: also, the studies span several years so that the seasonal variation
in the data is averaged out.
The key insight is that we can use any adequate description of the whole

distribution of price-spells. Under the assumption of steady-state we can
then derive the others as outlined in the previous section. The way the data
is usually described is the following:

1. The Hazard function. This is estimated in di¤erent ways (see Appendix
1), but in principle we can relate the hazard pro�le h2 [0; 1)F�1 to the
estimated hazard function. Most papers include the estimated hazard
function for the whole economy and at a more disaggregated level. This
can in principle be used to generate the corresponding distribution of
durations

�
�di
	
and the related cross-sectional distribution f�ig :

2. The frequencies of price change: �h. The proportion of �rms changing
prices per month: this can be aggregated over time or across sectors.
Unfortunately, this statistic does not tell us the distribution of dura-
tions or the hazard pro�le. We need to make additional assumptions
about the underlying distribution to unpack the distribution of dura-
tions from the frequency. In Dixon and Kara (2010), we assume that
there is a Calvo distribution within each sector with the Calvo reset
probability being the proportion of �rms re-setting their price. Ap-
plying this to the Bils and Klenow (2004) data appendix, we generated
the corresponding cross-sectional distribution f�ig :

In general, approach 1 is best: the hazard fucntion encapsulates all of the
information about the distribution of price-spells, whilst this information is
lost if we have only the sectoral frequencies. In this section we state models
of pricing that are su¢ ciently general to re�ect the empirical micro-data on
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prices: these are essentially generalizations of the standard Taylor and Calvo
models.

2.1 The Generalized Taylor Economy GT

Using the concept of the Generalized Taylor economy GT developed in Dixon
and Kara (2010, 2011), any steady-state distribution of completed durations
across �rms � 2 �F�1can be represented by the GT with the sector shares
given by � 2 �F�1 : GT (�). In each sector i there is an i�period Taylor
contract, with i cohorts of equal size: The sector share is given by �i: Since
the cohorts are of equal size and there as many cohorts as periods, there are
�i:i

�1 contracts renewed each period in sector i. This is exactly as required
in a steady-state. Hence the set of all possible GTs is equivalent to the set
of all possible steady-state distributions of durations. Note that for the GT
we need to know the DAF �. Although we can derive the DAF from the
distribution of price-spells �d, the latter cannot be applied directly to any
price theory. In e¤ect, since the distribution of durations ignores the panel
structure of the economy and the role of �rms in setting prices, it does not
directly relate to �rms pricing behavior.
In a GT , the reset price at time t in sector i xit is (in log-linearised form):

xit =

 
1Pi�1
k=0 �

k

!
i�1X
k=0

�kp�t+k (12)

where p�t is the optimal �ex-price at time t and � the discount rate. There
are F reset price equations, with i = 1:::F . The F prices in each sector i
are simply the average over the i cohorts in that sector:

pit =
1

i

i�1X
k=0

xit�k (13)

The aggregate price level is simply:

pt =

FX
i=1

�ipit (14)

It is simple to verify that the age-distribution in a GT is given by (8). If
we want to know how many price-spells are aged j periods, we look at sectors
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with lifetimes at least as large as j, i = j:::F . In each sector i, there is a
cohort of size �i:i�1 which set its price j periods ago. We simply sum over
all sectors i � j to get (8). The GT has been employed by Taylor (1993),
Coenen et al (2007), Dixon and Kara (2010, 2011), Kara (2008, 2009)9.
Note that the GT the "sectors" �i are de�ned by the duration of the

price-spells, not the industry or CPI category. They are the proportion of all
�rms (across all sectors) that have i period contracts. The key thing is that
when they set their price, the �rm knows how long it will last (i periods). In
fact, if we assume that all �rms know how long the price-spells are going to
last, individual �rms could move between "duration sectors": for example, a
�rm might set a price for 3 months and be in the i = 3 sector, and then put
it on sale for one month and be in the i = 1 sector that month and so on.
The fact that an individual �rm may have price-spells of di¤erent lengths
does not show that it is not Taylor-like in the sense that it might still know
how long its price will last.

2.2 The Generalized Calvo model (GC): duration de-
pendant reset probabilities.

The Calvo model most naturally relates to the hazard rate approach to view-
ing the steady state distribution of durations and it has a constant hazard
rate. We now consider generalizing the Calvo model to allow for the reset
probability (hazard) to vary with the age of the contract (duration depen-
dent hazard rate). This we will denote the Generalized Calvo Model GC. A
GC is de�ned by a sequence of reset probabilities: as in the previous section
this can be represented by any h2 [0; 1)F�1 where F is the shortest contract
length with hF = 1. Thus the empirical hazard rates displayed in the data
can be used to calibrate the hazard pro�le in the GC model. The resul-
tant model can be consistent with any steady-state distribution of durations,
including the one found in the data10.
The GC di¤ers from the GT in that when they reset prices, �rms do not

know how long the price-spell is going to last. There is not a sector speci�c
reset price, but one economy wide reset price xt with xit = xt for all i = 1:::F .

9See also Whelan (2004) for a theoretcial analysis.
10Note that an alternative parameterization of the duration dependent hazard rate

model is to specify not the hazard rate at each duration, but rather the probability of
the completed contract length at birth (see for example Guerrieri 2006).
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The log-linearised formula for the optimal reset price at t is

xt =
1PF

k=1 Sk�
k�1

FX
k=1

Sk�
k�1p�t+k�1 (15)

The aggregate price is then given by:

pt = �h
FX
k=1

Skxt�k (16)

with the aggregate price being given by (14) as before, where the �i are
derived from the reset probabilities h2 [0; 1)F�1 using Corollary 2. The
di¤erence between the GT and the GC lies in the whether the duration of
the price-spell is known: with the GC only the distribution of price spells
is known by the �rm. In e¤ect, the �rm does not know ex ante which
sector it is in. The GC model has been employed by Wolman (1999), Mash
(2003,2004), Dotsey and King (2006), Guerrieri (2006), Sheedy (2007) and
Paustian and von Hagen (2008), Alvarez and Burriel (2010)11.

2.3 The Multiple Calvo Model (MC).

One format that the micro-data is presented in is in the form of the pro-
portion of �rms changing prices each month, often with a detailed sectoral
breakdown: see Bils and Klenow (2004), Nakamura and Steinsson (2008),
Klenow and Krystov (2008), similar data in most of the IPN studies and the
Bank of England work on the UK (Bunn and Ellis (2010a,b). This naturally
suggests a modelling strategy of a multiple sector Calvo model MC. We can
de�ne a multiple Calvo process MC as MC

�
~h; �

�
where ~h2 (0; 1)n gives a

sector speci�c hazard rate12 ~hk for each sector k = 1; :::n and � 2�n�1 is
the vector of shares �k (this might be expenditure or CPI weights). The
reset price for each sector k = 1:::n is then:

xkt =
1PF

j=1

�
1� ~hk

�j�1
�j�1

FX
j=1

�
1� ~hk

�j�1
�j�1p�t+j�1 (17)

11This paper takes a special case of the GC, by having a constant hazard with spikes
at 12 monthly intervals.
12The notation here should not be confused: the substrcripts k are sectoral: none of the

sectoral calvo reset probabiltities are duration dependent.
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The average price in each sector k is then

pkt =
FX
j=1

�
1� ~hk

�j�1
�j�1xkt�j+1 (18)

And the aggregate price is then

pt =

nX
k=1

�kpkt (19)

The Multiple Calvo model has been employed by Carvalho (2006) and Car-
valho and Nechio (2008) and the earlier version of this paper (2006).
It is important to note that the MC does not have the same hazard

function as the data: it generates a hazard function with declining hazard
which is smooth. In that sense it is a parameteric representation of the data
and cannot be an exact representation of the data as we have in the case of
the hazard or the three distributions: see Alvarez (2008).

2.4 The Typology of Contracts.

In terms of contract structure (the nature of pricing), we can say that the
following relationships hold:

� GC = GT = SS. The set of all possible steady state distributions of
durations SS is equivalent to the set of all possible GT s and the set of
all possible GCs.

� C � MC � GC. The set of distributions generated by the Simple
Calvo is a special case of the set generated by MC which is a special
case of GC.

� ST � GT = GC Simple Taylor is a special case of GT , and hence also
of GC.

� ST \MC = ? if F > 1. Simple Taylor contracts are a special case of
GC, but not of MC.

Figure 1: The typology of Contracts
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This is depicted in Fig 1. The centrepoint represents the case where all prices
are �exible.The GC and the GT are coextensive, being the set of all possible
steady-state distributions (Propositions 1 and corollary 3). The Simple calvo
C (one reset probability) is a strict subset of the Multiple Calvo processMC
which is a strict subset of the GC13. The simple Taylor ST and theMC are
disjoint except for the case where all prices are �exible. The ST is a strict
subset of the GT: The size of the distributions is re�ected by the Figure:
ST has elements corresponding to the set of integers and is represented by
a few dots; Calvo is represented by the unit interval; MC by a slice of the
cake. The simple Calvo and Taylor models are only applicable if there is
one type of contract and no heterogeneity in the economy. If we believe
the Calvo model, but that reset probabilities are heterogenous across price
or wage setters, then the MC makes sense. If we do not believe the Calvo
model, then either the GC or GT are appropriate.

3 An application to UK price data14.

In this section, I illustrate the framework of steady-state identities to the UK
price data. As described in Bunn and Ellis (2009, 2010a), the ONS micro-
data for constructing the CPI is available for use at the VML laboratory:
it covers the years 1996-2006 and consists of 11 million price-observations
that were collected "locally" by ONS sta¤, rather than centrally. We have
followed Bunn and Ellis�s methodology in analyzing the data, except for the
estimation of the hazard and survivor function (see Appendix 1). We include
sales data (i.e. price spells that represent a temporary discount): excluding
sales would reduce slightly the share of short spells, but not the overall pic-
ture. The CPI data consists of price-quotes for speci�c products/services
from speci�c outlets. We are treating interpreting the price of a "product
at a particular location" as the price set by a "�rm" which produces the
product. This is not literally accurate, but is necessary if we are to link the

13TheMC can be represented by a GC with a decreasing Hazard. See an earlier version
of the paper with the same title, ECB working paper 676, Proposition 2 for a derivation
in discrete time.
14This work contains statistical data from ONS which is Crown copyright and repro-

duced with the permission of the controller of HMSO and Queen�s Printer for Scotland.
The use of the ONS statistical data in this work does not imply the endorsement of the
ONS in relation to the interpretation or analysis of the statistical data. This work uses
research datasets which may not exactly reproduce National Statistics aggregates
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macroeconomic theory (in which �rms set prices) to the CPI data.
Firstly, we start from the hazard function for the CPI covering all goods

and services in the VML dataset: we present the Hazard for the weighted
data (see Bunn and Ellis (2010a) for the weighting methodology) . The
weighted data puts more weight on services which have a lower hazard in the
�rst few months. We set F = 44 months: there are very few spells lasting
more than 44 months (less than 0.01%)15. We depict the UK hazard rate for
the �rst 37 months.

Fig 2. The UK Hazard Rate: Sorce ONS.

The CPI hazard function is similar to those found in other countries16:
it declines rapidly for the �rst few months: there is 12 month "spike" and
after that it remains roughly constant. There is a high probability of 36% of
changing price before the second month: even if we exclude sales this is still
30%. Note that the Hazard rate is between 10%-15% from month 4 onwards
(except for months 12 and 24 and towards the end when very few spells
survive). The implications of this are that there is a signi�cant long-tail of
price-spells. We can see this if we look at the survival function depicted in
Figure 3: the probability of surviving up to 24 months is 2.4%; the probability
of surviving up to 36 months is a little under 0.5%. The implied monthly
frequency of �rms re-setting their prices ��1S = 18:7% which is very close
to the direct measurement made in Bunn and Ellis (2010a) of 19.2% in the
weighted data17.

Fig 3. The UK survival function: Source ONS

The survival function implies that there is also a very long tail in the dis-
tribution of durations and even more so in the cross-sectional DAF. As we
would expect, there are a lot of short durations: 50% of price-spells last only
one or two months. There is a 12 month spike, but a long tail (over 2% of
price-spells last more than 24 months, 1% more than 30 months). The DAF
is much �atter: the share of one and two month spells is only 12%, there is
a peak at 12 months and the tail is even longer and fatter: 13.4% last longer

150.086313% to be exact to 4 s.f.
16See Alvarez (2008) page 12 for examples from four EU countries.
17See Bunn and Ellis (2010a) Tables A3 and A4. Note that the "direct" measurement is

not strictly speaking comparable with the Hazard estimate. This is due to the treatment
of censoring and di¤erent assumptions about which spells are included.
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than 24 months and 3% last longer than 36 months. The mean price-spell
duration is �d = 5:3 months (median 2, mode 1): the cross-sectional mean
�T = 13:2 months (median 10 months, mode 1 month). The cross sectional
distribution is broadly consistent with the survey data (see Alvarez 2008,
page 11) where �rms are asked how often they change price.

Figure 4. The UK Distributions: Source ONS.

An alternative way of looking at the data is parameterizing it using the
Multiple Calvo MC approach. In this we take data on the sectoral frequen-
cies of price-adjustment and assume that within each sector there is a Calvo
distribution. We can then sum up across sectors to obtain the aggregate
distribution implied by this parameterization. By construction, this has the
same frequency of price-change as in the data: 19.2%. However, the Hazard
rate is a smoothly declining one and the distribution of durations and the
DAF di¤er signi�cantly from the one found in the data.

4 Pricing Models Compared with a UK cali-
bration.

We will use the UK micro-data to see how the di¤erent models of pricing
di¤er in terms of their impulse-response in terms of a monetary shock. We
are implicitly assuming that the hazard function is not a¤ected buy the
monetary policy shock. We believe that this is reasonable: monetary policy
a¤ects the whole economy and is pervasive, but is not that relevant to the
individual �rm which will be more focussed on sector speci�c developments.
Obviously, if there were a very large monetary shock, then the assumption
of an invariant steady-state of distributions might be called into question.
We �rst use a very simple stripped-down log-linearised "Quantity Theory"

macro-model (see Ascari 2003, Dixon and Kara 2010). The advantage of our
simple model is that most of the dynamics originates from the pricing models,
the only other source being a simple auto-regressive money-supply shock.
We will also us the Smets-Wouter�s (2003) model following the methodology
Dixon and Le Bihan (2011) employ with the French CPI microdata.
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4.1 The simple Quantity Theory (QT) model.

To model the demand side, we use the Quantity Theory:

yt = mt � pt
where (pt; yt) are aggregate price and output and mt the money supply. We
model the monetary process as AR (1) :

mt = mt�1 + "t

"t = �"t�1 + �t

where �t is a white noise error term. We consider the cases of � = 0 and
� = 0:5 (the latter follows Christiano et al (2005)).
The optimal �exible price p�t at period t in all sectors is given by:

p�t = pt + yt

The key parameter  captures the sensitivity of the �exible price to output18:
we calibrate  = 0:2 as discussed in Dixon and Kara (2010). We have
converted the monthly price data into quarterly data.
Given this rudimentary macro-structure, we can then insert the sectoral

reset-price equations19, and sectoral price equations into the model, and ag-
gregate according to (14) or (19). We compare three models: the GT , the
GC which both have exactly the same distribution of price-spell durations
as found in the UK data, and thirdly the sectoralMC model calibrated with
the COICOP weights and frequencies of price-adjustment20.

Fig 5: Responses to a one-o¤ monetary Shock (� = 0)

In Figure 5, we depict the responses of output, the reset price21, the
general price level and in�ation to a one-o¤ shock. Looking at all the graphs,
18This can be due to increasing marginal cost and/or an upward sloping supply curve

for labour. See for example Walsh (2003) chapter 5 and Woodford (2003) chapter 3.
19For the GTE we have (12; 13) ; for the GC we have (15; 16), for the MC we have

(17; 18).
20See Bunn and Ellis (2010a) tables A3 and A4.
21The average reset price is the average conditional on the price being reset. For the

GTE this is:

�xt =

FX
i=1

��i
i

�
xit:
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it is striking that the three models of pricing have fairly similar impulse-
responses. However, if we compare the GT and GC (which have exactly the
same distribution of price-spells), we can see that in the GT the e¤ect on
output is consistently bigger than with the GC and likewise the e¤ect on the
price level is smaller. This can be explained by the more myopic response of
the reset-prices under GT : as we can see from the mean reset-price: the reset
price on the GT reponds less than it does for the GC. That is becuase �rms
that know how long the price-spell is going to last (as in the GT ) only need
to look ahead for the length of the price-spell, whereas the GC �rms have to
look F periods ahead. This means that they take into account future price
rises over a longer horizon than the GT �rms, meaning that they rise prices
more in the early stages after the shock. For example, the GT sector i = 1
simply sets the best price for the current period: it does not take into account
future general price rises at all. It is only the �rms with long-contracts that
have to look ahead, and of course they do not change their price verty often
and so take time to respnd to the shock. The e¤ect on in�ation is much
dampened for the GT on impact relative to the GC, the level of in�ation
being lower for the �rst 4 quarters and higher subsequently. If we turn to
the MC, we can see that it is similar to the GC but the e¤ect on output
is larger and on the reset price and price level more sluggish. In terms
of in�ation, this means that there is less in�ation initially (for the �rst six
months) and more later.

Fig 6: Serial Correlation in Monetary growth � = 0:5

In Figure 6 we consider an autoregressive monetary policy shock and �nd
that there is now a more radical di¤erence between the GT and the other
two models. If we look at in�ation we see that there is a distinct hump
shape which is exclusive to the GT : the peak impact on in�ation appears
after the initial monetary shock. The hump we �nd in the GT results from
the myopia of the GT �rms on average. Whilst all IRs have a hump in
output, both the MC and the GC have a peaked response of in�ation on
impact. This re�ects the �nding in Dixon and Kara (2010) that the Calvo
model does not capture the characteristic "hump shaped" response indicated
by empirical VARS. This "no hump" feature appears to be shared by its
generalizations MC and GC. If we turn to output, we can see that the
e¤ect of the monetary shock on output (prices) is consistently greater (less)
in the GT than the GC. The MC has a more ambiguous relationship. If
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we compare the GT and MC, we can see that the average reset price and
general price levels are higher for the MC up to the 9th quarter, and then
lower: this implies that the output response is larger initially for the GT ,
but less after the 10th quarter.
This example of the IRFs of major variables in a simple macro-model

shows how di¤erent models of pricing can yield di¤erent patterns of behavior
even though the distributions of price-spells are exactly the same or similar.
This re�ects di¤erences in the pricing behaviour of �rms under the di¤erent
models. Using the UK data to calibrate the model, it seems to make a
substantial di¤erence to output and in�ation responses depending on whether
�rms know the duration of their price-spells ex ante (as in the GT ) or not
(as in the GC).

4.2 The Smets-Wouters (2003) model.

In Dixon and Le Bihan (2011), we take the Smets-Wouters model for the euro
area and replace the wage and price setting model of Calvo-with-indexation
with the GT and GC models that are derived from the French micro-data.
We will now perform a similar exercise, but use the UK calibration for the
G /T and GC models of pricing (we do not have any reliable data for UK
wages, so leave wage-setting as in the SW model). This is meant as an
illustrative exercise: we do not restimate the model for the UK and use the
original SW parameters for the rest of the model (i.e. everything except the
price-setting). The model and parameter values are all outlined in Dixon
and Le Bihan (2011), so we will not repeat it here. We are not able to
consider the MC approach in the context of the SW model as it would need
a more thorough reworking if the model, so we restrict our comparison to
the GT and GC models.

Fig7. here:

We consider a policy shock to the Taylor rule leading to a higher interest
rate22. In Figure 7 we see the resultant IRFs in the SW model with the
UK calibrated pricing models. Turning �rst to in�ation, we can see that the
IRF for in�ation under the GT follows a nice hump shape, with little e¤ect

22I would like to thank Zhou Peng for running the simulations for me. �Impulse response
functions are the expected future path of the endogenous variables conditional on a shock
in period 1 of one standard deviation.�(Dynare Manual).

24



on impact but building up to a peak e¤ect at 6 quarters and then dying
away. Although our model is purely for illustration, we can compare this
IRF to the results in Kamber and Millard (2010) who estimated the VARS
and the SW model for the UK data using the original Calvo-with-indexation
for pricing. Both the VAR and the IRF for the estimated UK version of the
SW model have a hump at 6-8 quarters23, so in that sense our illustrative GT
is not at all out of line with the UK. If we consider the GC, we �nd that as
in the simple QT model, there is no hump at all and the maximum e¤ect of
the policy shock. When we look at the output IRFs, the fact that in�ation is
more sluggish under the GT leads to a bigger output response up to quarter
17. Interestingly, al;though the magnitudes are di¤erent, both IRFs peak at
4 quarters..Again, if we compare this with Kamber and Millard (2010), the
timing of the peak is consistent with both the estimated VAR and the UK
version of the SW model. This con�rms what we found in the simple QT
model but in the context of a more realistic model. There are many sources
of dynamics in the SW model which interact to generate behaviour of the
model. However, even though the G /T and GC have exactly the same UK
distribution of price-spells, the GT still gives rise to a hump-shaped in�ation
response whilst the GC does not. Whilst the Kamber and Millard results
hold for the UK, they are not unlike the results for other economies such as
the US (see for example Christiano et al 2005, Uhlig 2005). So, we can see
that the GT pricing model appears to o¤er a framework more in line with
the in�ation dynamics of the developed world than the GC.

4.3 The Forward Lookingness of pricing rules.

In this subsection we consider how pricing models di¤er when we control
for the distribution of durations (requiring the steady state distributions to
be the same) in terms of the "Forward Lookingness" (FL) of the pricing
rules which formalizes our notion of the myopic nature of the GT relative
to the GC. A pricing rule uses data from the present and future in order
to determine the optimal price. In a log-lineraised form, this gives the
current price as a linear function of data from each date ahead. The forward
lookingness of a pricing rule takes the weights across time (normalised to
unity) in the linearised decision rule and is de�ned as the resultant average
over the dates ahead. This simple measure captures the extent to which

23See Kamber and Millard (2010) Chart 3, page 29.
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the future in�uences the pricing decision, and is applicable across all pricing
rules. For simplicity, we ignore discounting, since it applies to all pricing
rules and whilst it would be simple to generalise the formulae to allow for
discounting, the no-discount case allows us to understand the di¤erences more
clearly. We willl �rst look at FL in the simple Calvo model with constant
rest probability �h: The reset price can be written:

xCt =

1X
s=1

Csp
�
t+s�1

Cs = �h
�
1� �h

�s�1
where Cs is the weight put on events s periods in the futire. We can then
de�ne Forward-lookingness as

FLC =
1X
s=1

sCs =
�
�h
��1

Let us now compare the simple-Calvo model to the Calvo-GTE24, which has
exactly the same distribution of durations as the Calvo model (as shown in
example 2 above), but where �rms know exactly how long the price-spells
are going to last. In this case we have the sectoral reset wages xit given by
(12) and the resultant mean reset-price is then:

�xCGTt =
1
�h

1X
i=1

�i
i
xit =

1X
i=1

�h
�
1� �h

�i�1
xit (20)

xit =
1

i

i�1X
j=1

p�t+s�1

Combining (15) with (20) yields:

�xCGTt =

1X
s=1

Bsp
�
t+s�1

Bs = �h

1X
i=s

(1� �h)i�1
i

24If we have a Clavo with reset probability �h; the corresponding Calvo-GTE has the
cross-sectional distribution �i = i:�h2:(1� �h)i�1 as derived in Dixon and Kara 2006).
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with the corresponding mean forward-lookingness

FLCalvo�GT =
1X
s=1

sBs =
1 + �h

2�h
=
1

2

�
�d+ 1

�
Observation 4. Let � = 1 and �h < 1: Then FLCalvo�GT < FLC :

The intuition is that when �rms know how long the price-spell is going
to last (i periods), then the reset price need look no further ahead than the
length of the price spell: there is a zero weight on all p�t+s for s > i � 1.
If the weight on prices after t + i � 1 is zero, then the weight on periods
before will be correspondingly higher. In contrast, the Calvo �rms do not
know how long the spell will last, and so have to take into account all future
periods. On average across the proportion of �rms resetting price (which is
by construction �h in both cases), the rest-prices are less forwald looking in
the Calvo-GT than the simple Calvo model. We rule out �h = 1; because
in that special case FLGT = FLC = 1. For example, with the commonly
used value of �h = 0:25, the Calvo-reset probability looks forward on average
4 periods, whilst the Calvo-GT looks forward 2:5 periods.
If we turn to the general case of any distribution, the results are similar.

In a GC with ! 2 [0; 1)F�1 ; the reset price and forward lookingness FL are:

xGCt = �h
F�1X
j=1

SjP
�
t+j�1 =

F�1X
j=1

�Aj P
�
t+j�1 (21)

FLGC =
F�1X
s=1

s�As =
�A (22)

In the corresponding GT we have (averaging over all F sectors)

xGTt =

FX
j=1

bsP
�
t+j�1

bs =
1
�h

FX
i=s

�i
i2
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Note that
PF

j=1 bs = 125 The forward lookingness of the GT is FLGT =PF
s=1 sbs. We can now compare the forward lookingness for any distribution

of durations under the alternative models of pricing (the GC and GT ).

Proposition 2 Let � = 1. Then if we compare and distribution of dura-
tions:

FLGT � FLGC

and FLGT < FLGC if F > 1 and �i > 0 for some i < F .

Suppose that all price-spells have the same length �F = 1, then �d = �T : In
this case, �A = 1+ �d

2
and FLGC �FLGT = 0. If there are a variety of lengths

(�i > 0 for some i < F ) then �A > 1
2

�
1 + �d

�
. Hence for any distribution of

durations, the GT is less forward-looking than the GC.

5 Conclusions

In this paper we have developed a consistent and comprehensive framework
both for analyzing di¤erent pricing models (excluding the state-dependent
pricing models) and relating the pricing models to the microeconomic data.
In particular, the distribution of completed price-spells across �rms (DAF )
is a key perspective which is fundamental to understanding and comparing
di¤erent models. Any steady state distribution of durations can be looked
at in terms of completed durations, which suggests it can be modelled as
a GT ; it can also be thought of in terms of Hazard rates which suggests
the GC approach. Both the GC and the GT are comprehensive: they can
represent all possible steady states. We also relate this approach to sectoral
frequency data which is widely available and can be modelled as a MC.
When we apply this framework to the UK micro-data, we �nd that the
di¤erent pricing models imply di¤erent macroeconomic behaviour in terms
of the impulse response functions to a monetary shock.
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As more empirical micro-data becomes available, it is vital that we adopt
a framework which enables us to link the data to our macroeconomic models.
Whilst the approach adopted here is limited to steady-state analysis, it does
provide a consistent way for linking the micro-data to the macroeconomic
models of pricing. It is for future work to see how this analysis can be
applied to non-steady-state analysis and state-dependent models.
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7 Appendix

7.1 Estimating the survival function.

This section describes how the survival function and related hazard function
in discrete time can be estimated using pricing microdata in a way that is
consistent and applicable models of pricing. Currently, the methods available
in the statistical packages such as SAS and STATA have been designed with
other applications in mind (medical data etc) and do not give the most
relevant output at �rst pass. They are based on the Kaplin-Meier (KM)
nonparametric estimator Fortunately, it is simple to adjust the output to
give the survivor and hazard functions in a manner which is consistent with
the framework of this paper.
The �rst adjustment to the survival function required arises from the

fact that we are looking at pricing models in discrete time macroeconomic
framework. In these theories, the �rm believes that it has a probability of
1 that it its price lasts for at least one period. The way survival rates are
usually reported is that the failure occurs during the period: thus the period
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one survival rate is one minus the period one hazard rate. This is easily
adjusted: following the pricing theory, we simply set S(1) = 1 and then "lag"
the estimated survival rates by one period to get (4). In e¤ect, we are
assuming that all of the failures in period 1 occur at the end of the period.
We can see this as simply alternative ways of de�ning the survival rate: in
standard survival analysis, S(i) is the "probability of surviving to the end of
period i", in this paper we de�ne the rate as the "probability of surviving to
the beginning of period i".
The second issue is more complex and has to do with how we reconcile the

estimated hazard function with the data on the proportion of �rms changing
price per month, which is 19.2% for the weighted data. From the theoretical
framework of this paper, we know from (5) that the sum of the survival
rates should be equal to the proportion of �rms changing price each month:
�h = ��1S . In order to explore this issue, we need to look more closely at
how the KM estimator is implemented in packages such as SAS and STATA.
First, we de�ne the set of price-spells which we want to include (and hence
which to exclude, such as left-censored spells). We also de�ne an event
("failure") which in this case is a price-change. The package then looks at
all the price-spells in the panel (in our paper de�ned by the set R de�ned
by equation (1)). It then prints out the raw data in a column: this lists the
number of price-spells that lasted up to i periods i = 1:::F: The �rst row is
the total of all price-spells. The second row is those that lasted two or more
periods etc. Next to this column are two others: "failed" and "lost". Of
those spells that did not last more than one period, some ended because of
a price-change (which we de�ne as "failure"), and some for another reason
(right truncation/censoring or some other reason). If we de�ne the number
of number of price-spells that have lasted up to the ith period ni, these are
de�ned as the spells "at risk" of failure. Of these, fi fail, Li are lost and the
rest survive to the next period: ni+1 = ni�fi�Li. The basic KM estimator
for the survival probability up to period i is:

Ŝ1(i) =
Qi
j=1

�
1� fi

ni

�
(23)

A key assumption of the KM estimator is that failure and loss are mutually
exclusive: that is if a spell is "lost", then it would not have failed (Kaplin and
Meier (1958) page 461 describe this as "the convention that death preceeds
loss").
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KM recognised that this assumption would not be reasonable in many cir-
cumstances: they also considered the "adjusted-observed" estimator, which
is

Ŝ2(i) =
Qi
j=1

 
1� fi

ni � Li
2

!
(24)

This estimation method is also found in packages such as SAS and STATA.
Many exisiting studies of the micro-price data appear to use either the "death
preceeds loss" or the adjusted-observed estimation method: for example Bunn
and Ellis (2010a,b) for the UK data, Baudry et al (2007) for the French data.
There is a basic problem with these two estimators when applied to the

CPI data: the survival rates are too high. For example, with the UK data
set, the implied average monthly frequency of price change (the reciprocal
of the sum of survival probabilities ��1S ) is 11%, which is much smaller than
what is observed in the data (19.2%). In this paper, to remedy this problem,
we have made the assumption that all of the lost spells represent failures
("loss is failure"), so that we have:

Ŝ3(i) =
Qi
j=1

�
1� fi + Li

ni

�
(25)

This estimator implies a monthly frequency of price change of 18.7% which
is much closer to the data. Whilst our preferred KM estimator of the hazard
function delivers a result that is closer to the data on monthly frequency of
price change, it is an ad hoc improvement to the more common methodology
and further research on this issue is required to develop a fully appropriate
and "optimal" estimator in this context.

7.2 Proofs.

7.2.1 Proof of Proposition 1.

Proof. The proportion of �rms that have a contract that last for exactly
1 period are those that are born (age 1) and do not go on to age 2. The
proportion of �rms that last for exactly i periods in any one cohort (born
at the same time) is given by those who attain the age i but who do not
make it to i+ 1 : this is

�
�Ai � �Ai+1

�
per cohort and at any time t there are

i cohorts containing contracts that will last for i periods.
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Clearly, since �Aj are monotonic, �i � 1, and

FX
i=1

�i =
FX
i=1

i
�
�Ai � �Ai+1

�
=

�
�A1 � �A2

�
+ 2

�
�A2 � �A3

�
� 3

�
�A3 � �A4

�
::::

=
FX
i=1

�Ai = 1

Hence � 2 �F�1:
The relationship between the distribution of ages and lifetimes can be

depicted in terms of matrix Algebra: in the case of F = 4:2664
�1
�2
�3
�4

3775 =
2664
1 �1 0 0
0 2 �2 0
0 0 3 �3
0 0 0 4

3775
2664
�A1
�A2
�A3
�A4

3775
Clearly, the 4� 4 matrix is a mapping from �3 ! �3: since the matrix is of
full rank, the mapping from �A to � is 1� 1. Clearly, this holds for any F .

7.2.2 Proof of Corollary 1:

Proof. To see this, we can rewrite (7):

�1 = �A1 � �A2
�2
2

=
�
�A2 � �A3

�
�i
i

=
�
�Ai � �Ai+1

�
�F
F

= �AF

hence summing over all possible durations i = 1:::F gives

FX
i=1

�i
i
=

F�1X
i=1

�
�Ai � �Ai+1

�
+ �AF = �

A
1
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So that by repeated substitution we get:

�A2 = �A1 � �1 =
FX
i=2

�i
i

�Aj =
FX
i=j

�i
i

j = 1:::F

7.2.3 Corollary 3.

Proof. Rearranging the F � 1 equations (9) we have:
�1
�h
= h1;

�2
2�h
= h2 (1� h1) :::

�i
i:�h

= hiSi; :::
�F
F�h

= SF

By repeated substitution starting from i = 1 we �nd that

hi =
�i
i

 
�h�

i�1X
j=1

�j
j

!�1
(26)

Si =
1
�h

"
�h�

i�1X
j=1

�j
j

#
Since we know that hF = 1, from (26)this means that:

1 =
�F
F

 
�h�

F�1X
i=1

�i
i

!�1
) �h =

FX
i=1

�i
i

Substituting the value of �h into (26) establishes the result.
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7.2.4 Proposition 2.

We will �rst show that FLGT = 1
2

�
1 + �d

�
:

FLGT =

FX
s=1

sbs

=
1
�h

FX
s=1

s
FX
i=s

�i
i2

=
1
�h

"
FX
i=1

�i
i2
+ 2

FX
i=2

�i
i2
::+ s

FX
i=s

�i
i2
+
�F
F

#

=
1
�h

"
FX
i=1

�i
i2

�
i(i+ 1)

2

�#
=
1
�h

"
FX
i=1

�i
(i+ 1)

2i

#

=
1

2�h

"
FX
i=1

iS(i)hi +
FX
i=1

S(i)hi

#
=

1

2

�
1 + �d

�
We have FLGC = �/A:There is a simple relationship between the average

age and the cross-sectional average completed length. If we look at the cross
section, within sector i, there are i cohorts with ages 1:::i. The average age
in sector i is thus 1+i

2
. We can then add up the ages across sectors i = 1::F :

�T =
FX
i=1

i�i

�A =

FX
i=1

1 + i

2
�i =

1

2

�
1 + �T

�
Hence �A is approximately half of �T . Since we know that �T � �d it follows
that FLGC � FLGT . �T = �d only when �F = 1:
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Figure 1: The typology of contracts.



Figure 2:  UK Hazard Rate. 

 
 
 

Figure 3: UK Survival Function. 
 
 



 
 
 
 

Figure 4:  The UK Distributions – Durations and cross-section (DAF). 
 
 
 



Figure 5: Responses to a one-off monetary Shock (ν=0) 

 



Figure 6: Serial Correlation in Monetary growth ν=0.5 
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Figure 7:  Inflation and Output Responses to a Monetary 
Shock in the SW model with UK Calibrated Pricing. 




