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Abstract

We analyze labor responses to technology shocks when firm entry
is sluggish due to endogenous sunk costs. We provide closed-form so-
lutions for transition dynamics that show, when firm entry is slow to
respond, labor will increase (decrease) relative to its long-run response
if returns to labor input at the firm level are increasing (decreasing).
Under stricter regulation (slower business churn), such short-run devi-
ations of labor persist for longer. There is also potential for short-run
productivity effects to differ from the long run.
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1 Introduction

A long-standing debate in business cycle theory is whether aggregate labor
(hours) increases or decreases on impact of a technology shock. We reconcile
both labor responses through two observations: (i) returns to labor inputs are
not constant at the firm level (ii) firm entry is not instantaneous. Specifically,
we argue that sluggish firm entry adjustment affects labor per firm which,
through returns to scale in labor input, determines short-run responses. And
regulation (specifically red tape) slows the rate of business churn increasing
the persistence of short-run labor deviations.

There is a growing body of literature that considers the aggregate im-
plications of firm entry and exit dynamics at a business cycle frequency.1

Most of this literature assumes internal returns to scale in input factors are
constant (or restricted to be decreasing as in Hopenhayn 1992).2 However
with a fixed overhead cost and imperfect competition, restrictions on returns
to scale in labor input are unnecessary: we derive existence conditions that
allow us to study arbitrary returns to labor input. Our contribution is to
explain that the response of aggregate labor to technology shocks depends on
whether slow firm entry increases or decreases labor’s efficiency at the firm
level. And, regardless of impact effect, the speed of convergence depends on
the flow of firm creation, which in turn depends on the level of regulation
in an industry/economy. We characterize deregulation as a cut in red tape,
which causes less congestion in the entry process decreasing the endogenous
sunk entry cost and speeding-up business churn.

The intuition is that the number of firms in an industry is a quasi-input
in production which represents the organization of the industry/economy.
Ceteris paribus, an extra firm decreases labor per firm which is an input in
the firm’s production function. Under the common assumption of constant
returns to firm-level labor, the decrease in labor per firm does not affect the

1Wang and Wen 2011; Bilbiie, Ghironi, and Melitz 2012; Bergin, Feng, and Lin 2016;
Clementi and Palazzo 2016; Sedlacek and Sterk 2017; Carvalho and Grassi 2017.

2Emphasis on in factors as opposed to returns to scale from fixed costs, and internal
as opposed to external returns to scale aggregation, which is studied in an entry context
by Barseghyan and DiCecio 2016.
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marginal product of labor (MPL), wages or in turn aggregate labor. But if
returns to labor are decreasing, the decline in labor per firm increases MPL,
which in turn increases wages and thus aggregate labor. The opposite holds
with increasing returns at the firm level.

Basu, Fernald, and Kimball 2006 show that in US manufacturing in-
dustries (durable and non-durable) returns to labor (hour per worker) are
increasing, whereas in non-manufacturing are decreasing. For this example,
our theory implies that a technology shock to manufacturing initially in-
creases labor and wages relative to their long-run level, but then subsequent
entry of new firms decreases wages and labor; whereas in non-manufacturing
a positive technology shock would initially have an undershooting effect on
labor and wages, then as firms enter wages and hours increase to their new
long-run level. More recently Cantore, Ferroni, and Leon-Ledesma 2017 (Fig.
1, p.70) provide empirical evidence that, at an aggregate level, the response
of labor to technology shocks has reversed over the past century in the US,
and that the deviation now persists for longer. We find that increased per-
sistence can be explained by greater regulation (more red tape) that slows
business churn.3 Data reported in Figure 1 indicate that red tape, proxied
by procedures to start a business, is positively related to the length of time
it takes to start a firm which proxies pace of business formation.4

We develop a general equilibrium firm dynamics model for a small open
economy (SOE) in continuous time. Households are able to perfectly smooth
consumption, and they can invest in setting up new firms by paying an
endogenous sunk entry cost. Once operational, firms compete under monop-
olistic competition, and pay a fixed overhead cost each period. The SOE
setup eliminates other sources of dynamics so that we can focus on firm
entry dynamics. There is no capital, only labor, and there is an internation-
ally traded bond with world interest rates equal to the household discount

3This speaks to recent literature on ‘declining business dynamism’ (Decker et al. 2018)
that links ‘declines in the pace of business formation’ to slower reallocation of resources.

4Using the World Bank Doing Business database, the scatter in Figure 1 represents 211
countries, and a small number of economic zones, for 2016. Venezuela is the 20 procedures
230 days outlier, and New Zealand is the 0.5 days 1 procedure point. Ebell and Haefke
2009 report similar trends in number of procedures and days to start-up for OECD data.
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Figure 1: Red Tape and Business Churn

rate. This implies the household is able to perfectly smooth utility, so con-
sumption dynamics do not play a role. The restriction to one state variable
(number of firms), keeps eigenvalues tractable, so we can study speeds of
adjustment (Chatterjee 2005) and short-run versus long-run effects analyt-
ically. To model dynamic entry we assume that the entry cost depends on
the flow of entry due to a congestion effect caused by red tape (Datta and
Dixon 2002).5 There is an intertemporal zero-profit condition which equates
the cost of entry in each instant to the net present value of incumbency, re-
sulting in the number of firms gradually adjusting towards its long-run value.
Output per firm and operating profits vary in the short run, whilst in the
long-run firms fully adjust so that there is a free-entry, zero-profit, steady-
state characterized by an average firm size that is unaffected by technology
change.6

To gain insight into the mechanism of adjustment, and associated labor
5This form of endogenous sunk cost follows a line of research established by Sutton

1991, and pursued primarily in IO work (Ericson and Pakes 1995; Das and Das 1997),
although endogenous sunk costs are gaining attention in macroeconomics (Lewis 2009;
Bergin and Lin 2012; Berentsen and Waller 2015).

6This dynamic entry model has both instantaneous free-entry (Jaimovich 2007;
Jaimovich and Floetotto 2008) and no-entry, fixed firms as limiting cases.
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responses, consider a positive permanent technology shock. Initially firms are
in a long-run steady-state position with zero profits. This free-entry outcome
occurs because past entry has adjusted to reduce demand to each firm such
that its output, which is sold at a markup, generates just enough revenue
to cover fixed costs.7 At this steady-state point firms always have increasing
returns to scale from overhead costs, regardless of returns to scale in labor
(marginal costs) which can be increasing, decreasing or constant. When
the permanent technology improvement occurs, per firm operating profits
(dividends), and analogously output per firm, increase as technology directly
improves the production technology, and indirectly affects labor supply which
adjusts instantaneously.8 Entry (a flow) also responds instantaneously in
response to positive profit, but this only affects the number of firms (a stock)
an instance later. Therefore variations in labor per firm are solely driven by
changes in aggregate labor on impact, and this variable will evolve over time
as the number of firms begins to adjust. Subsequently as new firms enter the
economy, whether entry increases, decreases or has no effect on aggregate
labor will depend on the returns to scale of labor in a firm’s production
function.

Additionally the short-run, procyclical movements in output per firm
(firm scale) and profits create procylical movements in measured productivity
as firms temporarily exploit increasing returns to scale from the fixed cost.
This is a Hall 1990 interpretation of endogenous productivity movements:
firms move down their average cost curve as capacity increases. However,
here it is temporary due to subsequent entry responses alleviating incum-
bents’ initial capacity response.

Our model is supported by several stylized facts9 and contributes to the
7Endogenous sunk costs are zero in steady state.
8Labor supply moves ambiguously depending on income and substitution effects. Our

general formulation will show that labor per firm will not necessarily increase, but output
per firm must increase so profits increase.

9Procylical net entry which lags the cycle (Campbell 1998; Bergin, Feng, and Lin 2016);
the existence of variable returns to scale in labor (Basu, Fernald, and Kimball 2006); the
existence of monopoly power (De Loecker and Eeckhout 2017); procylical average firm
scale (capacity utilization) which is contemporaneous with the cycle; procylical firm profits
also contemporaneous with the cycle (Lewis 2009; Bilbiie, Ghironi, and Melitz 2012);
countercylical labor share (Young 2004); and procylical measured productivity (Basu and
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debate on labor responses to technology shocks (Gali 1999; Basu, Fernald,
and Kimball 2006; Christiano, Eichenbaum, and Vigfusson 2004; Wang and
Wen 2011; Rebei 2014). Our endogenous sunk cost approach differs from
current models of endogenous dynamic entry that assume fixed sunk costs
and a time-to-build lag in discrete time (Bilbiie, Ghironi, and Melitz 2012;
Lewis and Winkler 2017). Rather than modelling regulation through vari-
ation in exogenous sunk costs (Bilbiie, Ghironi, and Melitz 2007; Poschke
2010; Barseghyan and DiCecio 2011; Storesletten, Kambourov, and Brandt
2016; Cacciatore and Fiori 2016; Asturias et al. 2017), which typically ad-
dresses long-run outcomes, we look at deregulation that reduces endogenous
sunk costs and focus on dynamic convergence.10 Our model adds a new di-
mension to the analysis of labor responses to technology (or fiscal) shocks by
providing a theoretical framework which shows how both the behaviour of
the marginal product of labor and the response of entry costs to the flow of
entry are crucial ingredients determining short and long-run behavior.

The remainder of the paper is as follows: Section 2 outlines the house-
hold’s problem; Section 3 analyzes the firm’s production problem and endoge-
nous entry decision; Section 4 collects together the equilibrium conditions,
then solves for steady-state and transition paths; Section 5 analyzes labor
responses and Section 6 shows that deregulation speeds-up convergence.

2 Household

There is a small open economy, with a world capital market interest rate r
equal to the discount rate ρ of the Ramsey household.11

r = ρ (1)

Fernald 2001; Jaimovich and Floetotto 2008).
10As clarified earlier, less stringent regulation reduces congestion in firms’ entry thereby

decreasing endogenous sunk costs. Whereas the literature that focuses on ‘deregulating’
fixed sunk costs is primarily concerned with the absolute number of firms that operate in
steady state, our interest is on the speed at which the number of firms adjusts to steady
state.

11This so-called knife-edge condition is a widely-discussed, model closing device
(Turnovsky 2002; Oxborrow and Turnovsky 2017).
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We assume King-Plosser-Rebelo preferences with logarithmic consumption
utility.

U(C, 1−H) = lnC − H1+η

1 + η
(2)

η = 1
FE
∈ (0,∞) is inverse Frisch elasticity of labor supply to wages. We

ignore indivisible labor η = 0. The instantaneous utility function U(C, 1−H)

is twice continuously differentiable and strictly concave with utility increasing
in consumption and decreasing in labor. Additive separability in labor and
consumption UCH = 0 implies that the marginal utility of consumption is
independent from labor.12 H lies in a convex compact set H ∈ [0, H̄].

The household earns income from three sources: supplying labor at wage
w, receiving interest income from net foreign bonds rB and receiving profit
income Π from owning firms. The household treats profit income as a lump
sum payment. The government finances its expenditure G by a lump-sum
tax equal to expenditure in each instant.13 The household solves:

max

∫ ∞
0

U(C,H)e−ρtdt (3)

subject to Ḃ = rB + wH + Π− C −G (4)

B(0) = B0 (5)

where r = ρ (1)

Given KPR preferences the optimal solutions satisfy

λ̇ = 0 =⇒ λ = λ̄ (6)

C̄ =
1

λ̄
(7)

HF (w, λ) = (λw)
1
η , η ∈ (0,∞) (8)

12Additive separability UCH = 0 is sufficient for our results to hold when there are
increasing marginal costs (decreasing returns to labor). But we require KPR preferences
for the decreasing and constant marginal cost cases.

13This is for convenience and avoids the need for introducing government bonds. Since
Ricardian equivalence holds, the timing of taxation does not matter. We include this for
the sake of our supplementary results which show that our technology shock results also
hold for government spending shocks.
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where we use bar notation for variables that are constant over time. For a
given wage, Frisch elasticity of labor supply HF is increasing in λ. Frisch
elasticity of supply measures the substitution effect of a change in the wage
rate on labor supply HF

w
w
HF = 1

η
.14 The perfect capital markets assumption

r = ρ (implies constant consumption λ̇ = 0) and additively separable utility
UCH are responsible for giving these simple dynamics.15 The result is that
the only dynamics in the model will be a result of firm entry, which will affect
wage. The advantage is to pinpoint the precise role of firm entry. Since λ
represents the marginal utility of consumption: a high λ means a low level
of consumption and vice versa.

Lastly, to ensure the private agent satisfies the intertemporal budget con-
straint, the transversality condition must hold

lim
t→∞

λBe−rt = 0 (9)

Therefore the solution to the problem is characterized by two boundary con-
ditions (5), (9) and two ordinary differential equations (ODEs) λ̇, Ḃ that
solve to give trajectories B(t), λ(t) ∀t. Subsequently λ(t) gives C(t) and in
turn H(t) through the static conditions. However before solving we need to
characterize w and Π behave endogenously in general equilibrium according
to factor market equilibrium that we develop next.

14See the appendix for full derivation of first-order conditions. We rule out indivisible
labor η = 0 which would imply C = w. If r 6= ρ then no interior steady state exists.
The trajectory of consumption will then be either increasing r > ρ or decreasing r < ρ
through time. There are many discussions of ‘closing devices’ (or ‘stationarity-inducing
devices’ ) in the SOE literature, which are necessary because the exogenous world interest
rate causes an incomplete market. See Seoane 2015 based on Mendoza 1991. Oxborrow
and Turnovsky 2017 give overview and close the model using demography.

15Additive separability uCH = 0 creates the simple relationship between consumption
and marginal utility of consumption. The presence of a small open economy and perfect
international capital markets ρ = r implies the household can completely smooth its
consumption so λ̇ = 0 =⇒ λ = λ̄. Therefore together they imply the marginal utility of
consumption is unchanging over time.
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3 Firms: Technology, Entry and Exit

The aggregate consumption good C is either imported or produced domesti-
cally by a perfectly competitive industry with a CRTS production function
using intermediate inputs which are monopolistically supplied. There is a
continuum of possible intermediate products, i ∈ [0,∞). At instant t, there
is a range of active products defined by N(t) < ∞, so that i ∈ [0, N(t)) are
active and available, whilst i > N(t) are inactive and not produced.

Total domestic output Y is related to inputs yi by the following technology

Y = N ς− θ
θ−1

[∫ N

0

y
(θ−1)/θ
i di

]θ/(θ−1)

(10)

where θ > 1 is the elasticity of substitution between products. The N ς

multiplier captures any Ethier effect, we remove this by assuming ς = 1

so an increase in the range of intermediates does not affect the unit cost
function.16 Treating the unit price of the consumption good as the numeraire,
the demand for each available product i takes the constant elasticity form

yi = p−θi
Y

N ς
(11)

There is a continuum of potential firms: each firm can produce only one
product. Therefore the index of firms and products is the same. At time
t, firm i ∈ [0, N(t)) has labor demand hi to supply output yi using the
technology

yi = Ahνi − φ (12)

where ν > 0 captures labor returns to scale (ν < 1 decreasing returns;
ν = 1 constant returns; ν > 1 increasing returns), and φ ≥ 0 is a fixed flow
overhead and A > 0 is a technology parameter which increases the marginal
product of labor.17 When ν < 1, φ > 0 there is an U-shaped average cost

16A common case is ς = 0 which leads to a variety effect, we want to remove this as it
will create an additional mechanism adding to the main result we want to distill. Without
removing love of variety, N will enter the labor market equilibrium condition, even with
constant returns to scale.

17In this paper overheads represent foregone output as in Jaimovich and Floetotto 2008;
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(AC) with increasing marginal cost (MC); this is compatible with both
perfect (Walrasian) and imperfect competition. When ν = 1, φ = 0, we
have constant returns to scale: AC = MC. When ν = 1, φ > 0, we have
constant MC and decreasing AC; when ν > 1 there is decreasing AC and
MC (the extent to which ν can exceed 1 is limited - the upper bounds are
stated below). In these last two cases with globally increasing returns to
scale, equilibrium can only exist with imperfect competition.

3.1 Aggregate Output

The number of active firms at instant t is denoted N(t): we will drop the
time index when it does not lead to ambiguity. Throughout we will be
assuming that labor markets function perfectly so that labor is allocated
equally across firms, so that hi = H/N, ∀i ∈ N . The aggregate production
function, obtained from (10), (12) under symmetry is homogeneous of degree
1 in N and H

Y (N,H) = AHνN (1−ν) −Nφ (13)

Treating N,H as independent, the partial derivatives are18

YN ≡
∂Y

∂N
= (1− ν)Ahν − φ = y − νAhν = (1− ν)y − νφ R 0 (14)

YH ≡
dY

dH
= Aν(H/N)ν−1 = Aνhν−1 = ν

y + φ

h
> 0 (15)

When there are increasing returns to labor ν > 1, an additional firm can
decrease aggregate output as it employs labor less productively than the
incumbents did prior to its entry. Since Y is homogeneous of degree 1 in
{N,H} then by Euler’s homogeneous function theorem

Y = YNN + YHH (16)

Devereux, Head, and Lapham 1996. An alternative is to have the overhead in terms of
labor.

18It is important to note the N derivative is partial, as the in general equilibrium
the total derivative would recognize that a variation in N implicitly varies H, that is
dY
dN = ∂Y

∂N + dY
dH

dH
dN . Since N is independent of H then its partial and total derivative are

equivalent.
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The aggregate marginal product of labor equals the firm-level marginal prod-
uct YH = yh because labor is allocated equally across firms. Later this implies
that wage corresponds to either aggregate or firm level MPL.

3.2 Profits and Factor Market Equilibrium

In this section, we determine the operating profits of an active firm (a firm
that does not incur any entry costs). Due to imperfect competition, the firm
maximizes operating profits given real wage w and aggregate output Y (using
output price as the numeraire P = 1) by choosing employment to satisfy the
factor market equilibrium19

w =
1

µ
YH =

ν

µ
A

(
H

N

)ν−1

=
ν

µ

y + φ

h
(17)

Where µ = θ
θ−1
∈ [1,∞) is the markup, which is 1 with perfect competition

when products are perfectly substitutable θ → ∞, so demand curves are
perfectly elastic.20

Lemma 1. ν < µ is a sufficient condition for the second-order profit max-
imization condition to hold. It is necessary and sufficient for steady-state
existence.

The aggregate flow of operating profits given w equals Nπ, where π is
19The result follows from the profit maximization problem outlined in Appendix A.4.

In the increasing returns case ν > 1, the second-order condition for profit maximization is
not always satisfied, so we give a necessary condition for this. However, our later condition
ν < µ is sufficient for this second-order necessary condition to hold.

20Labor demand h will vary depending on returns to scale. The relationship captures
‘aggregate labor demand’ (Jaimovich 2007), the right-hand side is the marginal revenue
product of labor which is the inverse of the markup multiplied by the marginal product of
labor. The number of firms affects the relationship through the marginal product of labor
since the markup is fixed. With endogenous markups and constant returns to scale, the
number of firms also affect the MRPL (also true of LOV). Both can create upward sloping
marginal product schedule dw/dH > 0.
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firm level profit.21

π = YN +

(
1− 1

µ

)
YH

H

N
(18)

Operating profits and output per firm (thus labor per firm) are isomorphic
since π = y − ν

µ
(y + φ) hence

π = y

(
1− ν

µ

)
− ν

µ
φ = Ahν

(
1− ν

µ

)
− φ (19)

y =
µπ + νφ

µ− ν
(20)

h =

(
y + φ

A

) 1
ν

=

(
µ(π + φ)

A (µ− ν)

) 1
ν

(21)

Operating profits respond less than one-for-one when output changes πy =

1 − ν
µ
< 1. The implication is that economic profits are less volatile than

output, and lemma 1 implies that this relationship cannot be negative. Fur-
thermore it formalizes that perfect competition µ = 1 is possible if returns
to scale are decreasing ν < 1 (increasing marginal costs). This is important
in steady state, which corresponds to zero profits π = 0, because it ensures
non-negative steady-state output. It is a steady-state existence condition.
This restriction implies that for profit maximizing output MR must inter-
sect MC from above. A higher µ implies steeper MR which allows steeper
downward sloping MC. Hence a higher degree of monopoly (more differen-
tiated products) allows for larger ν, whereas horizontal MC can only exist
if MR is downward sloping, so some monopoly power exists. Increasing
marginal costs ν < 1 is compatible with any level of imperfect competition
µ ∈ [1,∞). If ν > 1 marginal cost is downward sloping, and some market
power must exist (there is a limit on how low markups can go) µ > ν.

21The result follows from substituting w (17) and Y (16) out of the aggregate profit
expression Nπ = Y −wH such that Nπ = YNN +YHH− YH

µ H, which rearranges to (18).
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3.3 Productivity

This paper has dynamic entry so that π = 0 is not instantaneous, rather π(t)

decreases to zero as firms ‘slowly’ enter to arbitrage these profits. Unlike pa-
pers of static entry in which the zero-profit condition holds instantaneously
as firms immediately arbitrage positive profits, here it is important to un-
derstand how these varying profits affect economic variables.

Since profits are not zero instantaneously then during this short-run pe-
riod changes in output consist of changes in profits and changes in inputs (la-
bor) y = π+wh. Therefore the wage share is countercyclical wh

y
= ν

µ

(
1 + φ

y

)
and the profit share procylical π

y
= 1 − ν

µ

(
1 + φ

y

)
as they perfectly crowd

each other out. This implies that variation in output in the short-run con-
sists of more than just variation in inputs, so productivity (output change
explained by inputs) will appear higher than the case with zero profits as
there is an extra positive term in the productivity numerator.

From (20) and (21) output per firm and labor per firm are increasing in
operating profits

yπ =
µ

µ− ν
> 0 (22)

hπ =
µ

Aν(µ− ν)
h1−ν > 0 (23)

Since nπ = Y − n ν
µ
hν then substitute out n = Y

y
gives aggregate output as

a function of inputs and profits

Y =
A

1
ν (µ− ν)

1−ν
ν (µπ + νφ)

(µ(π + φ))
1
ν

H (24)
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We therefore define average labor productivity:22

P =
Y

H
=

(
A(µ− ν)1−ν

µ

) 1
ν (µπ + νφ)

(π + φ)
1
ν

(25)

3.4 Labor at Factor Market Equilibrium

In general for η ∈ (0,∞) and ν ∈ (0,∞), the intratemporal (labor supply)
condition (8) w = HηC and the wage market equilibrium (marginal product
schedule) (17) w = Aν

µ
Hν−1N1−ν equate H(λ,N,A) = HF

(
λ, 1

µ
YH(H,N)

)
to give HηC = Aν

µ
Hν−1N1−ν .23 It is useful to write this as a function of

(N, λ).

H(λ,N) =

(
N1−νλ

νA

µ

) 1
1+η−ν

, 1 + η − ν > 0 (26)

Lemma 2 (Labor Market Equilibrium Existence). To ensure that the labor
market condition is well-defined ν < 1 + η

The restriction ν < 1 + η implies that the slope of the labor supply
curve exceeds the slope of the labor demand curve. The labor supply curve
w = CHη slope is dw

dH
= ηw

H
, and upward sloping in (H,w) space (or flat with

indivisible labor η = 0). This must be greater than the slope of the marginal
(revenue) product schedule w = Aν

µ
hν−1, which is dw

dH
= whhH = (ν−1)w

h
1
N

=
(ν−1)w
H

, which reflects that demand for labor can be upward sloping if it has
increasing returns to scale.

As usual we can interpret the result in terms of profits. We can define
labor in terms of profits, and show its ambiguous response depends on returns

22An alternative representation of (25), which makes clear the role of returns to scale

ν is P =
(

A
π+φ

) 1
ν
(

1− ν
µ

) 1
ν−1 (

νφ
µ + π

)
. With ν = 1 this is equivalent to Jaimovich and

Floetotto 2008, Supplementary Appendix eq. 17. They develop a similar firm structure
but with static (instantaneous) firm entry.

23If labor is indivisible (η = 0) then all wage is consumed C = 1
µAνh

ν−1, so there is
no substitution effect. With constant marginal costs ν = 1 then C = A/(µHη) there is
only an income effect as wage is fixed. Jaimovich 2007 studies the effect of instantaneous
entry on this relationship with both constant returns and indivisible labor, but N affects
the relationship through endogenous markups µ(N) which causes indeterminacy.
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to scale. If we substitute out N = H/h = H
(
A(µ−ν)
µ(π+φ)

) 1
ν in (26) we get

H =

[(
A(µ− ν)

µ(π + φ)

) 1−ν
ν λνA

µ

] 1
η

(27)

Whether labor increases, decreases or does not respond to a change in profits
depends on returns to scale ν.

Proposition 1 (Existence). Necessary and sufficient condition for existence

ν < min [µ, 1 + η] (28)

Proof. Combine profit existence Lemma 1 and labor market existence Lemma
2.

A sufficient condition is that there are increasing marginal costs ν < 1.
Where 1 + η > 1 because we rule out indivisible labor η = 0.

Entry alters employment per firm which, through marginal costs, affects
the efficiency of labor and thus the real wage it is paid. With a decreasing
MPL, entry increases the real wage and hence labor supply; with increasing
MPL the opposite holds.

Proposition 2 (General Equilibrium Labor Behavior). From the labor mar-
ket equilibrium condition (26), we can see that labor responses to entry are

HN > 0 ⇐⇒ ν ∈ (0, 1) (29)

HN = 0 ⇐⇒ ν = 1 (30)

HN < 0 ⇐⇒ ν ∈ (1,∞) (31)

In deriving this result we show that labor elasticity to number of firms
ε ≡ HN

N
H

is constant and bounded

ε =
1− ν

1 + η − ν
(32)
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It is bounded by −η
1−ν+η

< ε < 1. The upper bound occurs with indivisible
labor η → 0. The lower bound follows from ν < 1 + η so that (working right
to left) −η

1−ν+η
< 1−(1+η)

1−ν+η
< 1−ν

1−ν+η
= ε. If ν = 1 then ε = 0. If ν < 1 then

0 < ε < 1. And if ν > 1 then −∞ < ε < 0.24

3.4.1 Total Derivatives: Labor Effect Vs. Business Stealing

In section 3.1 we derived the partial derivatives of aggregate output with
respect to labor YH > 0 and firms YN R 0, assuming H and N were indepen-
dent. Now that we have determined H(λ,N) we can assess total derivatives
of output with respect to entry by noting how labor changes endogenously.
Understanding this mechanism is important for our results on the effect of
entry on aggregate output to be derived later. The main point is that entry
has an ambiguous effect on aggregate output if there are decreasing returns
ν < 1 so that ε > 0. This is because entry strengthens labor supply which
can increase output. Whereas with constant or increasing returns ν ≥ 1 an
entrant always decreases aggregate output.

dY

dN
= y +N

dy

dN
= ε(1 + η)Ahν − φ (33)

The first equality states that an entrant contributes its own output y but
has a business stealing (Mankiw and Whinston 1986) effect on the output of
all other incumbents. In the appendix we show this business stealing effect
is strictly negative N dy

dN
= ν(y + φ)(ε− 1) < 0. The second equality of (33)

makes clear the crucial role of firm level returns to scale. It reads that an
entrant has a negative effect by bringing in an extra fixed cost, but it has
another positive, negative or zero effect depending on the labor elasticity to
entry ε. In terms of profits this can be written dY

dN
= YN + YHHN = π −(

1− 1
µ
− ε
)
YHh which is useful when we analyze zero-profit steady state.25

The first term is the partial derivative effect of an entrant (14) which we
have explained is ambiguous based on ν, and the second term is the labor
response which is also ambiguous based on ν.

24See Appendix A.5 for proof.
25See Appendix for full derivation and discussion.

15



Since y and π are in a one-one relationship, the business stealing ef-
fect can also be interpreted as entrants diminishing profits, from (19) dπ

dN
=

dy
dN

(
1− ν

µ

)
< 0. In the dynamic analysis we shall use the expression for

dividends with H(λ,N) substituted out:

π(λ,N) =

(
A1+η(νλ)ν

µ1+ηNην

) 1
1+η−ν

(µ− ν)− φ (34)

3.5 The Entry Decision

What determines the number of firms operating at each instant t? We de-
velop a congestion effects model of firm entry such that at time t there is a
flow cost of entry q(t) which increases in net entry E(t).26

E(t) ≡ Ṅ (35)

q(t) = γE(t) (36)

The sensitivity to congestion parameter γ ∈ (0,∞) represents red tape or
regulation in firm creation. Filing papers or gaining accreditation makes
start-ups more sensitive to flows of entry as regulator’s offices become more
congested (i.e. a queuing cost). Aggregating across all entry in a period gives
a quadratic firm entry adjustment cost function

C(E) ≡
∫ E

0

q dE =
γ

2
E2 =

q2

2γ
(37)

C(E) is a non-negative, convex function of the rate of entry. With zero entry,
the aggregate cost and marginal cost of firm creation is zero C(0) = CE(0) =

0. The interpretation of modelling the aggregate sunk cost as an adjustment
cost is that firm creation and destruction, whether positive (net entry) or
negative (net exit), generates resource costs.

26Entry and exit are symmetric, with −q being the cost of exit at time t. There are sunk
costs to entry and dismantling fees, such as severance payments, to exit. See Das and Das
1997; Datta and Dixon 2002 for further details. Exit and entry symmetry is not essential,
exit could require a fixed cost, perhaps zero, as in Das and Das 1997 and Hopenhayn 1992
or evolve endogenously according to productivity Melitz 2003; Hamano and Zanetti 2017.
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The flow of entry in each instant is determined by an arbitrage condition
that equates the return on bonds (opportunity cost of entry) with the return
on setting up a new firm. It is a differential equation in q, which determines
the entry flow by (36).27

π

q
+
q̇

q
= r (38)

π is given by (18) which will make this a nonlinear differential equation in
N .28 The first left-hand side term is the number of firms per dollar (1/q)
times the flow operating profits (dividends) the firm will make if it sets up.
The second term reflects the change in the cost of entry. If q̇/q > 0, then
it means that the cost of entry is increasing, so that there is a capital gain
associated with entry at time t if q̇/q < 0 it means entry is becoming cheaper,
thus discouraging immediate entry. The sunk cost q(t) represents the net
present value of incumbency: it is the present value of profits earned if you
are an incumbent at time t.29 This arises since the entrants are indifferent
between entering and staying out. When q < 0, the present value of profits is
negative: in equilibrium this is equal to the cost of exit. In steady state, we
have E = q = 0, so that the entry model implies the zero-profit condition.
Entry costs only arise on convergence to steady state.

Accounting for entry costs, aggregate profits Π are the operating profits
(dividends) of firms less the entry costs paid by the entrants

Π = Nπ − γE
2

2
= NYN +

(
1− 1

µ

)
YHH − γ

E2

2
(39)

Alternatively Π = Y (N,H)− wH − q2

2γ
.

27The arbitrage equation can be written in a way directly analogous to the user cost of
capital π = q

(
r − q̇

q

)
in capital adjustment cost models.

28Note that our entry model has the standard models as limiting cases: when γ = 0, we
have instantaneous free entry so that (38) becomes π = 0 and there are zero profits each
instant. If γ → +∞, then changes in N become very costly and N moves little if at all
which approximates the case of a fixed number of firms.

29This is because of the free-entry assumption that sunk costs equal the net present
value of the firm. See Stokey 2008 for a general discussion.
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4 Equilibrium Conditions, Steady State and So-

lution

The economic system is five dimensional {λ,N, q, B,H} with four differential
equations and one static equation. The static intratemporal condition (26)
impliesH(λ,N), so the system can be reduced to four differential equations in
four unknowns, and since the consumption differential equation implies con-
sumption is constant λ(t) = λ̄, we have three dynamic equations in N, q,B.

λ̇ = 0 =⇒ λ(t) = λ̄

Ṅ(q) =
q

γ
(40a)

q̇(N, λ̄, q) = rq − π(N,H(λ̄, N)) (40b)

Ḃ(B,N, λ̄, q) = rB + wH(λ̄, N) + Π(N,H(λ̄, N), q)− C̄(λ̄)−G

= rB + Y (N,H(λ̄, N))− C(q)− C̄(λ̄)−G (40c)

Alongside the four differential equations in system (40) there are four bound-
ary conditions: the household transversality (9); the number of firms transver-
sality; the initial condition on bonds; the initial condition on number of firms.
Notably the industry dynamics (N, q) form a two dimensional subsystem of
the three dimensional system, with bonds being B determined through (40c)
alone. Therefore we shall solve recursively: first solving the industry dy-
namics subsystem for N(t), q(t), then solve for bonds B(t) based on these
solutions.

4.1 Steady-state

Steady state is non-standard because there are three steady state conditions
Ṅ = q̇ = Ḃ = 0 but four unknowns λ̄, q, N,B.30 In order to get an extra
equation to solve this system for steady state, first we find a solution to

30This occurs because the consumption differential equations is always in steady-state
(λ̇ = 0) due to perfect consumption smoothing from r = ρ which implies consumption is
fixed λ = λ̄, but it does not relate to other variables in the system.
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the dynamic system for its timepaths of N(t, λ̄), q(t, λ̄), B(t, λ̄) conditional
on knowing one steady-state variable λ̄. Second we use the limit of the
bond solution and transversality to acquire an extra steady state condition,
allowing us to solve for steady state. It is this procedure which causes steady
state to depend on initial conditions N0, B0, so-called path dependency or
hysteresis.31

We use a tilde to denote a steady state variable. The Ṅ = 0 differential
equation immediately implies that steady-state sunk costs are zero, which
equivalently implies the net present value of a firm in steady state is zero.

q̃ = 0 (41)

This leaves two steady-state conditions q̇ = Ḃ = 0 in three unknowns Ñ , λ̄, B̃.
Through the arbitrage condition (40b), zero sunk costs (41) imply operating
profits are zero

π̃ = 0 (42)

Zero operating profits implies 0 = ỹ−w̃h̃ so the labor share is 100% of output
in steady state and steady-state productivity equals the steady-state wage

P̃ =
ỹ

h̃
= w̃ (43)

There is a fixed long-run aggregate output to aggregate labor ratio (labor
productivity). Hence free entry zero profits impose long-run constant-returns
on the relation between H̃ and Ỹ . Irrespective of the value of ν at the firm
level, a rise in H̃ will increase aggregate output by a fixed proportion P̃ = w̃.
The zero profit condition determines labor per firm, or aggregate labor as a
linear function of number of firms H̃(Ñ)

h̃ =

(
µφ

A(µ− ν)

) 1
ν

(44)

31An implication of this feature is that temporary shocks may have permanent effects.
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Labor per firm determines output per firm and labor productivity (which
equals wage).

ỹ =
ν

µ− ν
φ (45)

P̃ = w̃ =

(
A

µ

) 1
ν

ν

(
φ

µ− ν

)1− 1
ν

(46)

With h̃ and w̃ determined by the free entry arbitrage condition π̃ = 0, then
the labor market equilibrium condition (26) determines the number of firms
as a function of the consumption index, and therefore labor as a function of
consumption index:

Ñ(λ̄) =
(λ̄w̃)

1
η

h̃
(47)

H̃(λ̄) = (λ̄w̃)
1
η (48)

In order to find λ̄, we are left with one steady-state condition Ḃ = 0 that
we have not used: the output market clearing condition (steady-state bond
accumulation equation).

G+ C̄(λ̄)− w̃H̃(λ̄)− rB̃ = 0 (49)

This is an excess demand function for the steady state in terms of the price of
marginal utility λ̄. The first two terms G+ C(λ̄) represent expenditure and
are decreasing in λ̄. The second two terms wH(λ̄)+rB̃ represent income and
are increasing in λ̄. By the intermediate value theorem, this implies that there
exists a λ̄ > 0 such that the economy is at the steady state equilibrium given
B̃ (See Appendix A.7 for proof of existence and uniqueness with endogenous
B̃(λ̄).).

In this section we partly defined steady-state {Ñ , λ̄, B̃} for the primitive
variables of the dynamical system N, λ̄, B, given steady-state bonds B̃. We
gave Ñ(λ̄) analytically in (47), then used (49) to prove a steady-state λ̄ must
exist given B̃. In the next section, we derive solutions for dynamics which
provide an additional steady-state condition B̃(λ̄) that teamed with (49) and
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(47) can solve for λ̄ by expressing (49) entirely in λ̄ terms

G+
1

λ̄
− w̃1+ 1

η λ̄− rB̃(λ̄) = 0

4.2 Linearized system

The analysis of the steady state was conditional on the level of steady state
bonds B̃. However to determine B̃ we need to know the path taken to
equilibrium. The dynamics of the system will be analyzed by linearizing
around the steady state. The Jacobian matrix of the 3-dimensional system
is as follows (all elements are evaluated at steady state)

J =

 0 dṄ
dq

0
dq̇
dN

dq̇
dq

0
dḂ
dN

dḂ
dq

dḂ
dB


∣∣∣∣∣∣∣
·̃

=


0 1

γ
0

− d̃π
dN

r 0
d̃Y
dN

− d̃C
dq

r

 (50)

d̃C
dq

=
q̃

γ
(51)

d̃π

dN
=
π̃ + φ

Ñ(λ̄)

(
−ην

1 + η − ν

)
(52)

d̃Y

dN
= Ah̃ν

(
1 + ν

(
1− h̃
h̃

))
− φ (53)

where q̃ = π̃ = 0 (from (41) and (42)) and (44) gives h̃ as a function of ex-
ogenous parameters, but Ñ(λ̄) depends on endogenously determined steady-
state consumption index given in (47). Section 3.4.1 and equation (34) help
with these derivations, and make clear that both π an Y responses depend
on business stealing d̃y

dN
. Since the total effect of an entrant on aggregate

output is an important mechanism for our analysis we shall denote it

Ω ≡ dY

dN

The ambiguous effect of entry on aggregate output (Ω R 0) explored away
from steady state in section 3.4.1 is also ambiguous in steady state (Ω̃ R 0).
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It depends on
(
ε− 1 + 1

µ

)
. We discuss this extensively in section 4.2.3. For

dynamics it implies that the effect of entry on bond accumulation dḂ
dN
|·̃ is

ambiguous. The linearized system can be written Ṅ

q̇

Ḃ

 =


0 1

γ
0

1
Ñ(λ̄)

νηφ
1+η−ν r 0

Ω̃ 0 r


 N(t)− Ñ

q(t)− q̃
B(t)− B̃

 (54)

where Ω̃ =
νφµ

µ− ν

(
ε− 1 +

1

µ

)
(55)

4.2.1 Number of Firms and Entry (industry dynamics) Solution

The determinant and trace of the industry dynamics {N, q} sub-system B ∈
R2 in (54) are

det(B) = ∆ =
d̃π
dN

γ
= − νηφ

γ (1 + η − ν) Ñ(λ̄)
< 0 (56)

tr(B) = r (57)

det(B) is negative as 1 + η > ν and is increasing in λ̄.32 The root to the
characteristic polynomial corresponding to the subsystem is

Γ(λ̄) =
r

2

(
1± 1

r

[
r2 − 4∆(Ñ(λ̄))

] 1
2

)
(58)

The discriminant (square root term) is positive since the determinant is nega-
tive (∆ < 0). This implies two distinct real roots. And since the discriminant
exceeds 1, then so does its square root so there will be one positive and one
negative root. Hence the system is saddle-path stable, with a negative real
root Γ and a positive real root ΓU . Furthermore the trace is positive so the
sum of the eigenvalues is positive implying the positive eigenvalue is larger
than the absolute value of the negative eigenvalue. Our focus is the stable

32See Appendix A.6 for proof.
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root which is negative

Γ =
1

2

(
r −

[
r2 − 4∆)

] 1
2

)
(59)

Lemma 3. The stable eigenvalue is increasing in λ̄

Γλ̄ = − ∆

ηλ̄(r2 − 4∆)
1
2

=
1

ηλ̄

Γ(Γ− r)
r − 2Γ

> 0

Proof. See Appendix A.6.

The solution to the linearized subsytem is

N(t) =Ñ + exp[Γ(λ̄)t](N0 − Ñ) (60)

take derivative to get the net entry rate E = Ṅ = Γ exp[Γt](N0 − Ñ) and
substitute q = γE for the sunk cost solution

q(t) =γΓ exp[Γt](N0 − Ñ) (61)

4.2.2 Bonds Solution

Combining (40c) and (9) provides a condition that the solution for bonds
must satisfy in the long run (full derivation Appendix A.3).

0 = B0 +

∫ ∞
0

e−rt
[
Y − q2

2γ
− C −G

]
dt (62)

The two terms must cancel out, which has an intuitive interpretation. The
first term is the initial position of bond holdings. B0 > 0 implies the country
begins as a borrower, B0 < 0 implies it begins as a creditor. The second
term represents trade surplus if positive and deficit if negative. Therefore
(62) states that if a country begins as a borrower, at some point over the
time horizon it must run a trade deficit.
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Linearizing the differential equation in bonds gives

Ḃ(t) = Ω̃
[
N(t)− Ñ

]
− q̃

γ
[q(t)− q̃] + r

[
B(t)− B̃

]
(63)

where q̃ = 0. Then substitute in the N(λ̄, t) solution (60) restricts the
differential equation to be a linear first-order nonhomogeneous differential
equation in B(t)

Ḃ(t) = Ω̃
[
exp[Γt](N0 − Ñ)

]
+ r

[
B(t)− B̃

]
(64)

If the economy starts with bonds B(0) = B0 the solution to (64) is

B(t) = B̃ +
Ω̃

Γ(λ̄)− r
exp[Γ(λ̄)t](N0 − Ñ) (65)

where dḂ
dN
|˜ = Ω̃ gives the effect of entry on aggregate output. And this also

represents the effect of entry on the flow of bonds evaluated at steady state.
Ω̃ affects how accumulation of firms N0 → Ñ so N0 − Ñ < 0 changes stock
of bonds B(t). Ω̃ > 0 then entry strengthens home production and increases
bond investment, whereas Ω̃ < 0 then entry weakens home production and
decreases bond investment. In the Walrasian case (µ = 1, ν < 1), Ω̃ > 0

and the accumulation of firms leads to a reduction in bonds. The main
mechanism here is that there is a positive effect of N on labor supply and
output (YHN > 0), so that having too few firms means that wages, labor
income and home production are below their steady state level. To maintain
consumption, this low level of income is compensated by higher than steady
state imports, financed by running down bonds. An increase in firms per
se makes wages higher. However, the number of firms is increasing because
it is below the steady-state. The stock of bonds decreases because entry
implies that the initial level of N was low in the first place, not because the
accumulation of firms lowers income.

However, given µ > 1, ν < 1, if µ is large enough then bonds will increase
as firms are accumulated. This is because the level of profits along the path
to equilibrium is large: whilst the number of firms is below equilibrium, the
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extra profits generated are enough to exceed the adjustment costs and lower
wage. In addition, there is a capacity effect, so that productivity is higher
whilst the number of firms is below equilibrium (for µ > 1, free-entry leads
to excessive number of firms in steady-state). In the case of ν ≥ 1, the flow
of entry leads to an increase in the stock of bonds: this is because N has a
negative effect on wages and profits, so that N below its steady state implies
income above the steady state.

4.2.3 Effect of Entry on Aggregate Output

In general equilibrium, at steady state, entry may increase, decrease or have
no effect on aggregate output Ω̃ R 0. This depends on whether entry in-
creases, decreases or has no effect on labor supply, which depends on whether
labor is employed with decreasing, increasing or constant returns.

Proposition 3 (Entry and Aggregate Output). The effect of entry on ag-
gregate output Ω̃ is ambiguous in steady-state.

1. Lack of Entry: Ω̃ > 0 ⇐⇒ 1− ν > η(µ− 1)

2. Excess Entry: Ω̃ < 0 ⇐⇒ 1− ν < η(µ− 1)

3. Optimal Entry: Ω̃ = 0 ⇐⇒ 1− ν = η(µ− 1)

For ν ≥ 1 there is always excessive entry Ω̃ < 0. For ν < 1 all outcomes are
possible.33

Proof.

Ω̃ =

(
ε− 1 +

1

µ

)
YH h̃

Ω̃ = ν
φ

1− ν
µ

(
ε − 1 +

1

µ

)
=

νφµ

µ− ν

(
1

µ
− η

1 + η − ν

)
sgn Ω̃ = sgn

[
ε−

(
µ− 1

µ

)]
33Optimal entry refers to the number of firms that maximizes steady-state aggregate

output, conditional on a markup existing. There is no maximum with perfect competition
µ = 1, always a lack of entry due to a positive labor effect and no negative markup
(business stealing) effect.
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where sgn ε = sgn(1− ν) since ε = 1−ν
1+η−v from (32).

Next we provide a discussion of the three possible cases.34 From the
proof the outcome depends on whether the negative business stealing effect
−
(
µ−1
µ

)
≤ 0, µ ∈ [1,∞) dominates the labor elasticity to entry effect

−η
1+η−ν < ε < 1, which may be positive, negative or zero.

1. Excess Entry Ω̃ < 0: If there are constant ν = 1 or increasing ν > 1

returns to labor, ε ≤ 0, then the fall in labor reinforces the negative
business stealing effect, so there is unambiguously a negative effect
of entrants on aggregate output in steady state. This is a sufficient
condition but is not necessary, providing the business stealing effect is
large enough it can override even a positive labor elasticity effect that
arises with decreasing returns ν < 1.

(a) Example: Positive labor elasticity effect, dominated by negative
business stealing effect ν = 0.9, η = 1 therefore ε = 0.09 with
µ = 1.15 business stealing is −0.13.

(b) Constant Returns Special Case ν = 1: The labor effect is zero, so
only the negative business stealing effect is present. The smaller
the markup µ→ 1 the smaller the negative business stealing effect.
But it cannot equal 1 due to the existence condition ν < µ.

With large markups this outcome is likely. With less divisible labor
η → 0 this outcome is more likely.

2. Lack of Entry Ω̃ > 0: If there are decreasing returns ν < 1 then
0 < ε < 1 and the boost in labor from entry works against the negative
business stealing effect, so there can be too little entry if this positive
effect dominates the negative business stealing effect. ε > 0, hence

34Etro 2009; Etro and Colciago 2010 provide a discussion of ‘golden rule’ number of firms
when there is endogenous imperfect competition, constant returns and love-of-variety. The
golden rule number of firms is that which maximizes consumption and therefore output in
steady-state. They show that imperfect competition causes excessive entry in steady-state,
which our proposition corroborates (µ > 1 and ν = 1 implies 1 − ν < η(µ− 1), so excess
entry).
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ν < 1, is necessary but not sufficient, sufficiency requires it is positive
and larger than the negative business stealing effect.

(a) Example: Positive labor elasticity effect dominates negative busi-
ness stealing effect ν = 0.9, η = 1 therefore ε = 0.09 with µ = 1.05

business stealing is −0.05.

(b) Perfect Competition Special Case µ = 1, ν < 1, Ω̃ > 0: There is no
negative business stealing effect, and the the existence condition
ν < µ enforces decreasing returns. Therefore entry always has
a positive effect, implying lack of entry in steady state in the
Walrasian (perfect competition) economy.

3. Optimal Entry Ω̃ = 0: A necessary condition is that the ambiguous
labor elasticity effect is positive ε > 0, so it can counterbalance the
negative business stealing effect. Therefore a necessary condition is
decreasing returns ν < 1.

(a) Example: ν = 0.9, η = 1, µ = 1.1

4.2.4 Phase Portrait

The phase diagram in Figure 2 is analogous to the classic plot for a model of
capital adjustment costs (Uribe and Schmitt-Grohé 2017, Fig. 3.2). There
is a downward-sloping stable arm (saddle path) in thick black and an up-
ward sloping unstable arm (not plotted) that intersect at steady state (Ñ , q̃).
The numerical plot captures the shape of the two nullclines. The downward
sloping line represents the combinations of {N, q} for which q̇ = 0 and the
arbitrage condition is satisfied π = qr. Above the q̇ = 0 line, the arbitrage
condition implies that q̇ > 0; below it implies q̇ < 0 (the arbitrary unstable
green solution paths also show how the directions of motion switch either
side of the nullcline). The Ṅ = 0 phase line corresponds to the horizontal
N−axis, since Ṅ = 0 whenever q = 0. The saddle-path is downward sloping
between the horizontal axis and the arbitrage line. Note that from (61) the
derivative of the solution is q̇ = Γ2γ exp(Γt)(N0− Ñ), so the growth (shrink-
age) in the marginal cost of entry q (or net present value of a firm) is given
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Figure 2: Phase Portrait in {N, q} space.

in absolute terms by the stable eigenvalue∣∣∣∣ q̇q
∣∣∣∣ = Γ

with the sign being determined by whether profits are positive (firms accu-
mulation) or negative (decumulation).

4.3 Steady-state Bonds

The linearized dynamics give an explicit solution for steady state bonds as a
function of λ̄ and the initial conditions N0, B0. Evaluate (65) at t = 0 implies

B̃(λ̄) = B0 −
Ω̃

Γ(Ñ(λ̄))− r
(N0 − Ñ(λ̄)) (66)
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therefore the steady-state bond condition (66) and steady-state arbitrage
condition (47) give the excess demand condition (49) in terms of λ̄ only

w̃H̃(λ̄) + rB̃(λ̄)− C̄(λ̄)−G = 0 (67)

We can solve this for the steady-state consumption index λ̄, which then pro-
vides C̃(λ̄), H̃(λ̄), Ñ(λ̄), B̃(λ̄). We cannot solve (67) analytically since it is
highly nonlinear in λ̄. However we can show analytically that a unique so-
lution exists, and then solve for this numerically. A useful lemma to show
uniqueness (and other results) is that the steady-state excess demand func-
tion is strictly increasing in inverse consumption, so is decreasing in con-
sumption, under a mild regularity condition. The condition states that N0

must begin within a given neighbourhood of Ñ .

Lemma 4 (Excess Demand Monotonically Increasing). The steady-state
market-clearing condition is monotonically increasing in λ̄

w̃
dH̃

dλ
+ r

dB̃

dλ̄
− dC̃

dλ̄
> 0 (68)

if the following sufficient condition holds(
ε− 1 +

1

µ

)(
N0

Ñ(λ̄)
− 1

)
≥ −

(
ε− 1

Γ(λ̄)
+

1

rµ

)
(r − 2Γ(λ̄)) (69)

Proof. See appendix A.7.

The right-hand side of (69) is strictly negative and the left-hand side is
ambiguous. This condition is weaker than the simpler sufficient condition
N0− Ñ(λ̄)→ 0 which is commonly assumed and ensures the left-hand side is
zero.35 The condition always holds if there is entry N0 < Ñ and ε−1+ 1

µ
< 0

(i.e. Ω̃ < 0) implying the left-hand side is positive.

Corollary 1 (λ̄ Uniqueness). If (69) holds then there is a unique λ̄ that
solves (68).

35See Turnovsky 1997, p.68 (footnote 8) for a justification of this.

29



Proof. Lemma 4 shows that given (69) the steady state market clearing con-
dition (excess of income over expenditure) is strictly monotonic in λ̄. Hence,
if a steady-state exists it is a unique steady state solution for λ̄.

5 Technological Change

To understand the effect of a change in technology on the economy, we outline
a national income accounting framework. Total consumption consists of pri-
vate and public consumption TC = C+G. The household budget constraint
provides the national income accounting framework Y = C+I+G+(Ḃ−rB),
which is equivalent to GDP. It states that aggregate output is divided be-
tween consumption, investment (in firm creation/destruction), government
spending and the balance of trade (exports in the form of bond accumula-
tion less imports in the form of payments on bonds). Investment is costs
incurred to setup or close down firms I(E) = γE

2

2
. GNP is GDP less the

balance of trade GNP = C + I + G = Y − (Ḃ − rB). In steady state
˜TC = ˜GNP = ˜GDP + rB̃. In this section, since our focus is technology

shocks we assume that G = 0. There is neither government expenditure nor
taxation.36

5.1 Comparative Statics

An improvement in technology A reduces employment per firm but out-
put per firm (firm scale) (12) is unaffected. Consequently an improvement
in technology increases measured labor productivity and equivalently wages
since w̃ = P̃ .

dh̃

dA
= − h̃

νA
< 0 (70)

dP̃
dA

=
P̃
νA

=
dw̃

dA
=

w̃

νA
> 0 (71)

36We have supplementary results that shows our results hold for government spending
shocks.
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Therefore in the long run technological progress crowds out labor at the
firm-level but firm size remains constant. These comparative statics are
simple as they only depend on exogenous variables. However, the aggregate
endogenous variables {C̄, Ñ , B̃} ((7), (47), (66)), excluding q̃ which is zero,
are a function of A directly but also depend on λ̄(A). Therefore technology
change has a direct (partial) and an indirect (consumption) effect.37 From
the steady-state market clearing condition, the implicit function theorem
implies that technology unambiguously increases consumption. This rise in
consumption (indirect effect) decreases aggregate labor and number of firms,
whereas the direct partial effects of increased technology increase labor and
number of firms. Overall, the partial effect dominates in the number of firms
case, whereas it is ambiguous in the labor case. The increase in the stock
of firms implies an increase in aggregate output, and a bond response that
depends on the whether there are excessive, insufficient or optimal number
of firms.

Proposition 4 (Long-run Effect of Technology). A permanent improvement
in technology:

dC̄

dA
> 0 (72)

dÑ

dA
> 0 (73)

sgn
dB̃

dA
= sgn−Ω̃ (74)

sgn
dH̃

dA
= sgn

[
B0 −

Ω̃

Γ− r
N0

]
(75)

dỸ

dA
= ỹ

dÑ

dA
> 0 (76)

The effect on the labor supply is ambiguous because there is a conflict of
income and substitution effects: the higher wage causes a substitution effect
for less leisure and more consumption, which increases labor. Whereas the
income effect increases leisure and decreases labor. Which effect dominates

37We call the indirect effect a consumption effect as λ̄(A) is inverse consumption by (7).
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depends on the level of initial wealth. From (66) B0 − Ω̃
Γ−rN0 is the initial

value of wealth in terms of bonds.38 If Ω̃ > 0, that is ν < 1 and µ small
enough, then a sufficient condition for employment to increase dH̃

dA
> 0 is that

bond holdings are non-negative B0 ≥ 0. Likewise, if Ω̃ < 0, (for which ν ≥ 1

is sufficient) then a sufficient condition for employment to decrease dH̃
dA

< 0

is that bond holdings are non-positive B0 ≤ 0.
Bonds respond in the opposite direction to the entry effect on output.

If technology-induced entry increases GDP, then bonds decrease (less bor-
rowing is necessary). If technology-induced entry decreases GDP, then bonds
increase (more borrowing is necessary). Since steady-state bonds only depend
on technology through Ñ , the bond response follows the number of firms in-
crease:m dB̃

dA
= dB̃

dN
dÑ
dA

, and to a first-order approximation sgn dB̃
dN
≈ sgn−Ω̃.39

Similarly the increase in number of firms determines that aggregate output
increases as long-run output per firm (firm scale) is constant.

5.2 Comparative Dynamics

From the dynamic solution for number of firms (60), we can see that on
impact t = 0 of a shock the number of firms is fixed N(0) = N0 fixed,
whereas entry adjusts E(0) = Γ(N0 − Ñ), which affects the stock of firms
an instance later. In other words number of firms is a stock (state) variable,
and entry is a flow (jump) variable. Thus entry jumps the economy onto its
stable manifold instantaneously as the shock hits, subsequently the number
of firms responds as the economy evolves along this manifold. Therefore the
difference between the impact and long-run effects depend on the effect of
entry.

On impact the labor effect is ambiguous, as in the long run, due to com-
peting substitution and income effects. The reason is also the same (income
and substitution effects may clash). However, if we look at the difference
between the impact and long-run effect, this depends on whether there is an

38From (66), − Ω̃
Γ−rN0 = B̃−B0− Ω̃

Γ−r Ñ thus the term − Ω̃
Γ−rN0 is the present value of

the bonds that would have been decumulated/accumulated if Ñ = 0.
39The approximation arises from assuming we begin close to steady-state N0 − Ñ → 0.

From (66) removes the effect of the eigenvalue responding to Ñ .
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ν < 1 ν > 1 ν = 1

B0 >
Ω̃

Γ−rN0 Increase, Overshoot Increase, Undershoot Increase, Constant
B0 <

Ω̃
Γ−rN0 Decrease, Overshoot Decrease, Undershoot Decrease, Constant

B0 = Ω̃
Γ−rN0 Constant, Overshoot Constant, Undershoot Constant, Constant

Table 1: Conditions for Taxonomy of Labor Dynamics

increasing or diminishing marginal product of labor at the firm level. When
ν < 1, on impact there is a negative relationship between the real wage and
employment.; when ν > 1 a positive relation; when ν = 1 no relation. We
can thus get undershooting of employment (ν > 1) or overshooting (ν < 1)
on impact relative to the new long-run level depending on whether entry
increases or decreases the marginal product.

Proposition 5. Impact versus long-term effects of technological change on
labor and wages.

1.

sgn

[
dH(0)

dA
− dH(∞)

dA

]
= sgnHN = sgn [ν − 1] (77)

2.

dw(0)

dA
=
YHH
µ

dH(0)

dA
+

w̃

Aν
(78)

sgn

[
dw(0)

dA
− dw(∞)

dA

]
= sgn [ν − 1] (79)

Table 1 captures the combination of static (Proposition 4) and dynamic
effects (Proposition 5) on labor. Rows capture the static effect that labor
might in the long-run increase, decrease or remain constant depending on
initial wealth. Columns capture the dynamic effect that labor might initially
overshoot, undershoot or perfectly reflect its long-run level.
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5.2.1 Productivity

Lastly, we turn to the impact effect of the technological improvement on
measured productivity P .40 First there is the pure technology effect: an in-
crease in technology boosts output. Second there is the capacity utilization
effect, the impact of changes in employment and output per firm relative to
their long-run level. The capacity utilization effect is in general ambiguous
in sign because dH(0)/dA can take either sign. When employment increases
on impact, we have overshooting, so that the short run impact of the tech-
nological change exceeds the long-run effect. When employment decreases
on impact, we have undershooting of underlying measured productivity. A
direct comparison of the impact and long-run effect indicates that:

Proposition 6. Impact versus long-run productivity effects.

dP(0)

dA
− dP(∞)

dA
= (µ− 1)P̃ dH(0)

dA
(80)

If the impact effect on employment is positive, then productivity over-
shoots its long-run value, if employment falls on impact, it undershoots. It is
interesting to note that this result holds irrespective of whether the marginal
product of labor is increasing or decreasing. If we start from a free-entry
equilibrium, then AC is decreasing (since P = AC > MC) for all values
of ν. In other words there are increasing returns from the fixed cost. A
marginal improvement in technology will still leave the AC curve downward
sloping at the existing level of employment. Hence, if employment decreases
on impact, then you move back up the AC curve thus tending to decrease
productivity. If employment rises on impact, then you move down the AC
curve and increase measured productivity. Hence, it is the fact that there
are locally increasing returns to employment that drives the simple relation-
ship between employment and productivity independently of the technology
parameter ν. The degree of increasing returns in free-entry equilibrium is
determined by the degree of imperfect competition.

40Savagar and Dixon 2017 explore this endogenous productivity result in a richer model
of the closed-economy with capital and strictly decreasing returns.
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Figure 3: Undershooting and Overshooting of Measured Productivity.

The fact that capacity utilization causes endogenous productivity dynam-
ics is important, since it implies that the time profile of measured productivity
will differ from, and may tend to mask, the true changes in underlying tech-
nology. For example, if there is measured productivity overshooting, then a
permanent change in technology leads to an exaggerated instantaneous im-
pact, that dies away to the permanent change. On the other hand, if there
is a capacity effect which reduces measured productivity at first (capacity
widening), the measured technology increase will adjust up to the full effect.
The deviations of measured productivity from technological change become
small when there is near-perfect competition, and in the limiting Walrasian
economy they disappear. This indicates that it may be misleading to use
measured productivity as a guide to technological change in the short-run
unless the economy has almost perfect competition in the output market.
We show the two cases of measured productivity undershooting and over-
shooting in figure 3. In both cases, we have a permanent step change in
technology with A rising to A1 at time T , so that the corresponding steady
states are P̃ and P̃1 respectively.
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Figure 4: A = 1→ A = 1.1 DRS ν < 1

Figure 5: A = 1→ A = 1.1 IRS ν > 1
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Figure 6: A = 1→ A = 1.1 CRS ν = 1

6 Entry Regulation Shock

The parameter γ in the cost of entry equation (36) represents a dynamic
barrier to entry that we interpret as a red tape parameter. It captures how
sensitive the cost of firm entry is to the number of firms that are entering
in an instance. If a resource needed to setup a firm is in inelastic supply,
like a government office that provides certificates to enter an industry, then
the resource becomes congested as more firms seek the certification and this
makes entry more costly: a firm may wait until a less congested period
to attain certification. An economy/industry with lots of these red tape
procedures will have a large γ, whereas an economy with less red tape will
have a low γ. In this section we study a ‘deregulatory’ policy that corresponds
to a cut in γ.41

Proposition 7. The economy’s speed of adjustment is monotonically de-
creasing in regulation of business creation.

41We adopt the term deregulatory shock following Bilbiie, Ghironi, and Melitz 2007 and
authors who interpret entry costs as influenced by regulation (Blanchard and Giavazzi
2003; Poschke 2010; Barseghyan and DiCecio 2011). Whereas these focus on differences
in fixed exogenous sunk costs and changes in the stock of operating firms, our interest is
endogenous sunk costs and changes in speed of adjustment of firms.
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The magnitude of the stable root captures the economy’s speed of ad-
justment, as it dictates the speed of adjustment of the sole state variable
(number of firms) through the exponential term of (60). Taking the deriva-
tive of the stable root, which is negative, with respect to the regulatory
parameter gives42

Γγ = Γ∆∆γ =
∆γ

(r2 − 4∆)
1
2

=
−∆

γ(r2 − 4∆)
1
2

> 0 (81)

The stable root is increasing in the discriminant and the discriminant ∆γ =

−∆
γ
is increasing in the regulatory parameter. Therefore an increase in reg-

ulation, increases the the value of the negative root moving it closer to zero
and implying slower adjustment. The effect of deregulation on speed of ad-
justment is striking in the simulated impulse response functions. Figure 7 is
comparable to Figure 4, and steady-state is reached in approximately one-
fifth of the time. The result implies that economies with less red tape recover
faster following a shock.43 In the context of labor responses to technology
shocks, it implies that labor achieves its new steady state faster. This an im-
portant new dimension to the labor responses debate, because although we
show that either overshooting or undershooting are plausible, this may not
matter much if recovery is sufficiently fast due to nimble firms’ adjustment.

More generally, the result implies that demand management could be
teamed with structural reform in the form of entry deregulation. A given
stimulus can have a faster effect with a less bureaucratic firm creation process.
This relates to policy publications by the IMF and growing academic liter-
ature, much of which focuses on structural reform in Europe (e.g.di Mauro
and Lopez-Garcia 2015).44

42This result is for a given steady-state Ñ(λ̄)) as γ will also affect Ñ through λ̄.
43This line of analysis relates to Chatterjee 2005 who focuses on speed of convergence

related to capital utilization.
44For example, see The Case for Fiscal Policy to Support Structural Reforms (IMF blog,

2017) and Eurozone rebalancing: Are we on the right track for growth? Insights from the
CompNet micro-based data (voxEU, Bartelsman, di Mauro, Dorrucci, 2015) on the policy
side and Cacciatore, Duval, et al. 2016a; Cacciatore and Fiori 2016; Cacciatore, Duval,
et al. 2016b on the academic side.
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Figure 7: Deregulation A = 1→ A = 1.1, γ = 0.05

7 Conclusion

This paper focuses on the effects of dynamic entry in a small open economy.
We emphasize nontrivial labor market responses to firm entry when firm-
level labor efficiency differs. We show that deregulation of the entry process
affects speed of adjustment in the economy. A deregulatory policy, which we
model as a cut in red tape, can increase the speed at which technology shocks
(or fiscal stimulus) are experienced through the firm creation or destruction
channel.

We provide a tractable model that provides testable implications for fu-
ture applied research. The main insight is that if firm entry is slow to react,
then the response of labor to technology shocks will depend on whether la-
bor is employed with decreasing, increasing or constant returns to scale at
the firm level. As returns to labor change across industries, and industries
vary in significance across economies, some economies will see labor increase
following a shock, whereas others will see labor decrease, and some will see
little effect. Furthermore the persistence of these deviations will depend on
the level of regulation, and consequently on the pace of firms’ adjustment.
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A Appendix

A.1 Household Optimization

The Hamiltionian and optimality conditions are

Ĥ(t) = U(C,H) + λ(t)[rB + wH + Π− C −G] (82)

ĤC = 0 : UC(C)− λ =0 (83)

ĤH = 0 : UH(H) + λw =0 (84)

ĤB = ρλ− λ̇ : λr = ρλ− λ̇ (85)

Ĥλ = Ḃ : Ḃ = rB + wH + Π− C −G (86)

The presence of a small open economy and international capital markets
ρ = r means that the household can completely smooth its consumption so
(85) implies λ̇ = 0. Therefore marginal utility of wealth is unchanging over
time. λ = λ̄ combined with additively separable preferences uCH = 0 this
implies from (83) that consumption is constant and in a one-one relationship
with marginal utility of wealth.45

C̄ = C(λ̄) (87)

This relationship from (83) then implies labor only varies with real wage from
(84)

H = H(λ̄, w) = H(C̄, w) (88)

This represents the households labor supply.
45We could not make the final step from (83) is uCH 6= 0. Imposing additive separability

and therefore constant consumption, we simplify analysis of dynamics as C can be treated
as fixed.
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A.2 General Equilibrium Effect of Entry on Output

There are two ways to think of the effect of an entrant on aggregate output
dY
dN

, and they offer different intuitions. The first begins with Y = Ny and
the second begin with Y = AN1−νHν −Nφ.

1. dY (N,y(N,H))
dN

= d[Ny]
dN

= y + N dy
dN

An entrant always causes ‘business
stealing’ from other firms: a fall in output at the firm level or analo-
gously, by (20), a fall in an each incumbents’ profits.

dy

dN
< 0 (89)

dy

dN
=
d (AN−νHν − φ)

dN
(90)

= −ν (y + φ)

N
+ ν

(y + φ)

H

dH

dN
(91)

= ν
(y + φ)

N
[ε− 1] < 0 (92)

= YH
h

N
[ε− 1] (93)

Therefore the aggregate business stealing effect is

N
dy

dN
= ν(y + φ)(ε− 1) (94)

This also implies the effect on operating profits is negative and less
than proportional

dπ

dN
=

(
1− ν

µ

)
dy

dN
< 0 (95)

At the aggregate level it is not clear whether the negative business
stealing effect of an entrant aggregated across all incumbents offsets
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the positive effect of the new firms’ extra output.

dY

dN
=
d(Ny)

dN
(96)

= y +N
dy

dN
(97)

= y + νAhν(ε− 1) (98)

= Ahν(1− (1− ε)ν)− φ (99)

=
(1− ν)(1 + η)

1 + η − ν
Ahν − φ (100)

= ε(1 + η)Ahν − φ (101)

The final representation makes clear the crucial effect of returns to
scale. It reads that an entrant has a negative effect by bringing in
an extra fixed cost, but it has another positive negative or zero effect
depending on ε.

2. Alternatively use (18), where the first term is the partial derivative
effect of an entrant which we have explained is ambiguous based on
ν, and the second term is the labor response which is also ambiguous
based on ν.

dY (N,H)

dN
=
d[AN1−νHν −Nφ]

dN
= YN + YHHN (102)

= π −
(

1− 1

µ

)
YH

H

N
+ YHHN (103)

= π −
(

1− 1

µ
− ε
)
YHh (104)

A.3 Bonds

The dynamic equation (40c) is a first-order, linear, nonhomogeneous ordinary
differential equation in B. Rewrite in standard form

Ḃ − rB = Y − q2

2γ
− C −G (105)

47



Multiply by the integrating factor e−rt

e−rtḂ − re−rtB = e−rt
[
Y − q2

2γ
− C −G

]
(106)

Notice the left-hand side as the result of a product rule differentiation, and
use this to help integrate

e−rtB = κ+

∫ ∞
0

e−rt
[
Y − q2

2γ
− C −G

]
dt (107)

To find the constant of integration κ, evaluate at t = 0 and use the initial
condition B(0) = B0

B(0) = κ = B0 (108)

Substitute this back in (107), then evaluate at t→∞. Use the transversality
condition (9) which makes the left-hand side zero as λ = λ̄. Therefore

0 = B0 +

∫ ∞
0

e−rt
[
Y − q2

2γ
− C −G

]
dt (62)

A.4 Profit Maximization with Variable Returns to Scale

max
h

πi = piyi − whi (109)

s.t.
pi
P

=

(
Y

N ςyi

) 1
θ

(11)

yi = Ahνi − φ (12)
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π =

(
Y

N ς

) 1
θ

(Ahν − φ)1− 1
θ − wh (110)

πh =

(
Y

N ς

) 1
θ
(

1− 1

θ

)
(Ahν − φ)−

1
θ · Aνhν−1 − w (111)

πhh = −1

θ

(πh + w)

y

(y + φ)ν

h
+

(πh + w)(ν − 1)

h
(112)

=
πh + w

h

[
ν

(
1− 1

θ
− φ

θy

)
− 1

]
(113)

The second-order condition πhh < 0 for maximization is always satisfied when
ν ≤ 1. However with increasing returns ν > 1 it is possible that the term
in square brackets is positive, unless the following necessary and sufficient
condition holds θ

(
θ−1
θ
− 1

ν

)
< φ

y
. Throughout the paper we impose that

the markup θ
θ−1
≡ µ exceeds returns to scale µ > ν (this is necessary for a

well-defined steady-state), but it is also a sufficient condition for the second-
order condition to hold since 1

µ
− 1

ν
< 0 < φ

θy
. Under perfect competition

θ →∞ so µ→ 1, there must be increasing marginal costs ν < 1 which gives
the outcome that with a fixed cost, Walrasian equilibrium only exists with
increasing marginal costs, where marginal cost intersect minimum average
costs at a firm’s minimum efficient scale.

To find the profit maximizing (πh = 0) outcome, exploit symmetry Y/N =

y.

πh =

(
Y

N ςy

) 1
θ
(

1− 1

θ

)
· Aνhν−1 − w = 0 (114)

πh = N
1−ς
θ

(
1− 1

θ

)
· Aνhν−1 − w = 0 (115)

πh = N
1−ς
θ

(
θ − 1

θ

)
νAhν−1 − w = 0 (116)

where we ignore love of variety by assuming ς = 1.
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A.5 General Equilibrium Labor Behavior

Proof of Proposition 2. Take the derivative of (26)

HN =
1− ν

1 + η − ν
H

N
(117)

Therefore, the elasticity follows naturally

ε = HN
N

H
=

1− ν
1 + η − ν

(118)

The elasticity is less than 1, it approaches 1 in the indivisible labor limit.

lim
η→0

ε = 1 (119)

lim
η→∞

ε =

0+ ν < 1

0− ν > 1
(120)

A.6 Jacobian Results

In the results that follow, the trace, determinant, eigenvalue relationships
are useful

∆ = ΓΓU (121)

r = Γ + ΓU (122)

∆ = Γ(r − Γ) (123)

(r2 − 4∆)
1
2 = r − 2Γ (124)

The determinant of the entry subsystem det(B) = ∆(Ñ(λ̄)) is increasing in
λ̄.

∆λ = ∆NÑλ = −∆

Ñ
· Ñ
ηλ̄

= −∆

ηλ̄
> 0 (125)

50



The stable root is increasing in the determinant

Γ∆ = −r
2

(
1

2

(
1− 4∆

r2

)−1
2

· −4

r2

)
(126)

=
1

(r2 − 4∆)
1
2

=
1

r − 2Γ
> 0 (127)

and therefore increasing in the number of firms

dΓ

dÑ
= Γ∆∆N =

Γ(Γ− r)
r − 2Γ

1

Ñ
> 0 (128)

Therefore the stable root is increasing in λ̄

Γλ̄ = Γ∆∆λ = Γ∆∆ÑÑλ > 0 (129)

which proves Lemma 3.

A.7 Steady-state Proofs

Repeating the steady-state bond condition here

B̃(λ̄, A) = B0 −
Ω̃

Γ(Ñ(λ̄))− r
(N0 − Ñ(λ̄)) (66)

The total derivative of steady-state bonds with respect to inverse consump-
tion is

dB̃

dλ̄
= −Ω̃

d
(
N0−Ñ(λ̄)

Γ(N(λ̄))−r

)
dλ̄

 = Ω̃

[
(Γ(λ̄)− r)dÑ

dλ̄
+ [N0 − Ñ(λ̄)]dΓ(Ñ)

dλ̄

(Γ(λ̄)− r)2

]
(130)

The response of steady-state bonds to inverse consumption λ̄ is ambiguous
because both Ω̃ and [N0− Ñ(λ̄)] are ambiguously signed. Since this model is
path-dependent (steady-state depends on initial conditions Ñ(λ̄, N0) due to
(66)), we cannot evaluate at N0 = Ñ , which removes the changing eigenvalue
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effect (see Caputo 2005, p. 475-477 for this common approach).46 Instead
we follow Turnovsky 1997, p.68 (footnote 8) and assume this component
[N0− Ñ ] is small, which – to a linear approximation – removes the changing
eigenvalue effect.

Lemma 5. The effect of a change in the consumption index on bonds is

dB̃

dλ̄
=

Ω̃

Γ(Ñ(λ̄))− r

[
Γ

r − 2Γ

(
r

Γ
− 3 +

N0

Ñ

)]
Ñ

λ̄η
(131)

Proof. From (66) a change in consumption index only affects steady-state
bonds indirectly through its effect on steady-state stock of firms

dB̃

dλ̄
=
dB̃

dÑ

dÑ

dλ̄
(132)

Then steady-state stock of firms affects bonds directly ∂B̃
∂Ñ

through Ñ and
indirectly dB̃

dΓ
dΓ
dÑ

through the eigenvalue Γ(Ñ(λ̄)):

dB̃

dÑ
=
∂B̃

∂Ñ
+
dB̃

dΓ

dΓ

dÑ
=

Ω̃

Γ(Ñ(λ̄))− r

[
1 +

(
N0 − Ñ(λ̄)

Γ(Ñ(λ̄))− r

)
dΓ

dÑ

]
(133)

Therefore the effect of a change in consumption index on bonds through
eigenvalues is an indirect-indirect effect.

dB̃

dλ̄
=
dB̃

dÑ

dÑ

dλ̄
=

(
∂B̃

∂Ñ
+
dB̃

dΓ

dΓ

dÑ

)
dÑ

dλ̄
(134)

=
Ω̃

Γ(Ñ(λ̄))− r

[
1 +

(
N0 − Ñ(λ̄)

Γ(Ñ(λ̄))− r

)
dΓ

dÑ

]
dÑ

dλ̄
(135)

Using (128) the term in square brackets simplifies

dB̃

dλ̄
=

Ω̃

Γ(Ñ(λ̄))− r

[
Γ

r − 2Γ

(
r

Γ
− 3 +

N0

Ñ

)]
dÑ

dλ̄
(136)

46Attempting this approach here introduces another fixed point problem since changing
N0 to equal Ñ will in turn change Ñ due to path-dependency.
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Therefore substituting in (157) gives (131).

Corollary 2. If N0

Ñ(λ̄)
< 3− r

Γ
then

sgn
dB̃

dλ̄
= − sgn Ω̃ (137)

Proof. From (131) this result ensures the term in curled parenthesis is neg-
ative.

Hence a sufficient condition is N0

Ñ
< 3, which allows for both entry and

exit −Ñ < N0 − Ñ < 2Ñ . The economic interpretation is that the initial
stock of firms (market size) is greater than zero and less than three times
the steady-state stock of firms. This is more general than the (commonly
assumed) stronger condition that the initial condition is arbitrarily close to
steady state N0

Ñ
→ 1. This condition simply ensures we ignore the changing

eigenvalue effect.

Corollary 3. If [N0 − Ñ(λ̄)]→ 0 then

sgn
dB̃

dλ̄
= − sgn Ω̃ (138)

Proof. From (133) as N0 − Ñ(λ̄)→ 0

dB̃

dÑ
≈ ∂B̃

∂Ñ
=

Ω̃

Γ(Ñ(λ̄))− r
(139)

dB̃

dλ̄
≈ ∂B̃

∂Ñ

dÑ

dλ̄
=

Ω̃

Γ(Ñ(λ̄))− r
Ñ

λ̄η
(140)

Lemma 6 (Steady-state Existence). By the intermediate-value theorem at
least one steady-state solution exists.

Proof of Lemma 6. Split the steady-state excess demand function into two
functions: an income function f(λ̄) = w̃H̃(λ̄) + rB(λ̄) and an expenditure
function g(λ̄) = C(λ̄)+G, so we have f(λ̄)−g(λ̄) = 0. Analyze the functions

53



for the limits of λ̄. Existence follows from the functional forms for H(λ̄, A) =

(λ̄w)
1
η and C(λ̄) = 1

λ
. Also that B̃ is bounded in (66) since Ñ is bounded as

it is proportional to H̃, which lies in [0, 1]. limλ→0H = 0 and limλ→0C =∞
so expenditure exceeds income. limλ→∞H = 1 and limλ→∞C = 0, so income
exceeds expenditure. Hence for at least one intermediate value of λ (67) is
satisfied.

Proof of Lemma 4. We aim to show

w̃
dH̃

dλ
+ r

dB̃

dλ̄
− dC̃

dλ̄
> 0 (68)

Since dC̃
dλ̄
< 0, a sufficient condition is to show that w̃ dH̃

dλ
+ r dB̃

dλ̄
> 0. That

is, we show that the positive labor effect always dominates the (potentially)
negative bond effect.

w̃
dH̃

dλ̄
+ r

dB̃

dλ̄
=
ỸH
µ

dH̃

dλ̄
+ rΩ̃

[
(Γ− r)dÑ

dλ̄
+ [N0 − Ñ ]dΓ

dλ̄

(Γ− r)2

]
(141)

Substitute Ω̃ =
(
ε− 1 + 1

µ

)
ỸH h̃ and dÑ

dλ̄
= dH̃

dλ̄
1
h̃

=

[
YH
µ

dH̃

dλ̄
(Γ− r) + r

(
ε− 1 +

1

µ

)
YH

dH̃

dλ̄

+
r
(
ε− 1 + 1

µ

)
YH h̃(N0 − Ñ)

Γ− r
dΓ

dλ̄

 1

Γ− r
(142)

=

[
1

µ
(Γ− r) + r

(
ε− 1 +

1

µ

)

+
r
(
ε− 1 + 1

µ

)
h̃(N0 − Ñ)

(Γ− r)dH̃
dλ̄

dΓ

dλ̄

 YH dH̃
dλ̄

Γ− r
(143)
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Cancel r
µ
and use that dH̃

dλ̄
= dÑ

dλ̄
h̃

=

 1

µ
Γ + r (ε− 1) +

r
(
ε− 1 + 1

µ

)
(N0 − Ñ)

Γ− r

dΓ
dλ̄

dÑ
dλ̄

 YH dH̃
dλ̄

Γ− r
(144)

Remembering ε − 1 < 0, the first two terms are negative and the third
term (the changing eigenvalue term dΓ

dλ̄
) is ambiguous. As with signing B̃λ̄,

a sufficient condition to remove the problematic changing eigenvalue term is
N0 − Ñ → 0. Although a weaker, but messier, sufficient condition is:(

ε− 1 +
1

µ

)(
N0

Ñ
− 1

)
Γ

r − 2Γ
≤ −

(
Γ

rµ
+ ε− 1

)
(145)(

ε− 1 +
1

µ

)(
N0

Ñ
− 1

)
≥ −

(
ε− 1

Γ
+

1

rµ

)
(r − 2Γ) (146)

The right-hand side is negative so this condition always holds if there is entry
N0 < Ñ and ε− 1 + 1

µ
< 0 implying Ω̃ < 0. Or if there is exit N0 > Ñ and

and ε− 1 + 1
µ
> 0 implying Ω̃ > 0.

A.8 Dynamics

Rather than defining steady-state as a function of h̃(A), w̃(A) as in (47) and
(48), since both depend on A and we are investigating changes in A it is
useful substitute out. Repeating B̃, expressing dependence on A, is also
useful. A only affects B̃ through Ñ , which it affects directly and indirectly:
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Ñ(A, λ̄(A)) via (147).

Ñ(λ̄, A) =

(
λ̄
ν

µ

) 1
η

A
1+η
νη

(
µ− ν
µφ

) 1+η−ν
νη

(147)

H̃(λ̄, A) = h̃(A)Ñ(λ̄, A) =

(
λ̄
ν

µ

) 1
η

A
1
νη

(
µ− ν
µφ

) 1−ν
νη

(148)

B̃(Ñ(A, λ̄(A))) = B0 −
Ω̃

Γ(Ñ(A, λ̄(A)))− r
(N0 − Ñ(Ñ(A, λ̄(A)))

(66)

Technology change has a direct (partial) and an indirect (consumption)
effect on the core endogenous model variables

dX

dA
=
∂X

∂A
+
dX

dλ̄

dλ̄

dA
, X ∈ {C̄, Ñ , B̃} (149)

The direct (partial) effects of A holding λ̄ constant are simple to calculate.
There is no partial effect on consumption, only an indirect effect.

∂C̄

∂A
= 0 (150)

∂Ñ

∂A
=

(1 + η)Ñ

νηA
> 0 (151)

∂B̃

∂A
≈ Ω̃

Γ− r
∂Ñ

∂A
R 0 =⇒ sgn

∂B̃

∂A
= sgn−Ω̃ (152)

∂H̃

∂A
=

H̃

νAη
> 0 (153)

From the steady state market clearing condition (67), we can use the implicit
function theorem to infer that technology decreases the marginal utility of
consumption and therfore increase consumption (since through (7) consump-
tion and marginal utility are inversely related).
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Proposition 8 (Technology Effect on Steady-state Consumption).

dλ̄

dA
< 0 (154)

dC̄

dA
=
dC̄

dλ̄

dλ̄

dA
> 0 (155)

dC̄

dλ̄
= − 1

λ̄2
< 0 (156)

Therefore an increase in technology increases consumption (decreases
marginal utility), which, from (47) and (48), will have an indirect effect of
decreasing numbers of firms and labor. This is because consumption crowds
out investment in firms.

dÑ

dλ̄
=
Ñ

ηλ̄
> 0 (157)

dB̃

dλ̄
=
dB̃

dÑ

dÑ

dλ̄
≈ Ω̃

Γ− r
dÑ

dλ̄
=⇒ sgn

dB̃

dλ̄
= − sgn Ω̃ (158)

dH̃

dλ̄
= h̃

dÑ

dλ̄
=
H̃

ηλ̄
> 0 (159)

Proof of Proposition 8. The total derivative of (67) with respect to technol-
ogy is

dw̃

dA
H̃ + w̃

(
∂H̃

∂A
+
dH̃

dλ̄

dλ̄

dA

)
+ r

(
∂B̃

∂A
+
dB̃

dλ̄

dλ̄

dA

)
− dC

dλ̄

dλ̄

dA
= 0 (160)

Therefore

dλ̄

dA
= −

dw̃
dA
H̃ + w̃ ∂H̃

∂A
+ r ∂B̃

∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

< 0 (161)

The denominator is positive under sufficient condition (69) or stronger suffi-
cient condition N0 − Ñ → 0. Let’s focus on the numerator

dw̃

dA
H̃ + w̃

∂H̃

∂A
+ r

∂B̃

∂A
(162)
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which appears to be ambiguous. We shall show it is positive implying (161)
is negative.

dw̃

dA
H̃ + w̃

∂H̃

∂A
+ r

∂B̃

∂A
(163)

=
w̃

νA
H̃ + w̃

H̃

νAη
+ r

Ω̃

Γ− r
(1 + η)Ñ

νηA
=

1 + η

νA

[
w̃H̃

(1 + η)
+

w̃H̃

(1 + η)η
+ r

Ω̃

Γ− r
Ñ

η

]
(164)

=
1 + η

νA

[
w̃H̃

η
+ r

Ω̃

Γ− r
Ñ

η

]
=

1 + η

νA

[
ỸH
µ
H̃

η
+ r

Ω̃

Γ− r
Ñ

η

]
(165)

Substitute Ω̃ = (ε− 1 + 1
µ
)ỸH

H̃
Ñ

=
1 + η

νA

[
ỸH
µ
H̃

η
+ r

(ε− 1 + 1
µ
)ỸH

H̃
Ñ

Γ− r
Ñ

η

]
=

(1 + η)ỸHH̃

νAη

[
1

µ
+ r

(ε− 1 + 1
µ
)

Γ− r

]
(166)

=
(1 + η)ỸHH̃

νAη

1

(Γ− r)

[
Γ

µ
+ r(ε− 1)

]
=

(1 + η)Ñ(ỹ + φ)

Aη

1

(Γ− r)

[
Γ

µ
+ r(ε− 1)

]
> 0

(167)

Using H̃
ηλ̄

= dH̃
dλ̄

we can show

=
(1 + η)λ̄

νA

ỸH
dH̃
dλ̄

(Γ− r)

[
Γ

µ
+ r(ε− 1)

]
(168)

Substitute (144) (ignore changing eigenvalue effect)

=
(1 + η)λ̄

νA

(
w̃
dH̃

dλ̄
+ r

dB̃

dλ̄

)
> 0 (169)

Therefore

dλ̄

dA
= −

dw̃
dA
H̃ + w̃ ∂H̃

∂A
+ r ∂B̃

∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

= −(1 + η)λ̄

νA

(
w̃ dH̃

dλ̄
+ r dB̃

dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

)
< 0 (170)
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Proof of Proposition 4. Firms

dÑ

dA
=
∂Ñ

∂A
+
dÑ

dλ̄

dλ̄

dA
(171)

=
(1 + η)

νηA
Ñ − Ñ

λ̄η

[
(1 + η)λ̄

νA

(
w̃ dH̃

dλ̄
+ r dB̃

dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

)]
(172)

=
∂Ñ

∂A

[
1−

w̃ dH̃
dλ̄

+ r dB̃
dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

]
=
∂Ñ

∂A

[
−dC̄

dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

]
> 0 (173)

Bonds

dB̃

dA
=
∂B̃

∂A
+
dB̃

dλ̄

dλ̄

dA
=
dB̃

dÑ

∂Ñ

∂A
+
dB̃

dÑ

dÑ

dλ̄

dλ̄

dA
(174)

=
dB̃

dÑ

[
∂Ñ

∂A
+
dÑ

dλ̄

dλ̄

dA

]
=
dB̃

dÑ

dÑ

dA
(175)

From (133) if N0−Ñ → 0 then dB̃
dÑ

= ∂B̃
∂Ñ

+ dB̃
dΓ

dΓ
dÑ

= Ω̃
Γ−r

(
1 + N0−Ñ

Γ−r
dΓ
dÑ

)
≈ Ω̃

Γ−r

thus

dB̃

dA
≈ Ω̃

Γ− r
dÑ

dA
R 0 =⇒ sgn

dB̃

dA
= sgn−Ω̃ (176)

Labor:

dH̃

dA
=
∂H̃

∂A
+
dH̃

dλ̄

dλ̄

dA
=

H̃

νAη
+
H̃

νλ̄

dλ̄

dA
=
∂H̃

∂A

[
1 +

νA

λ̄

dλ̄

dA

]
(177)

Substitute out (170)

=
∂H̃

∂A

1−
(1 + η)

(
w̃ dH̃

dλ̄
+ r dB̃

dλ̄

)
w̃ dH̃

dλ̄
+ r dB̃

dλ̄
− dC̄

dλ̄

 (178)

=
∂H̃
∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC̄

dλ̄

(
−η

(
w̃
dH̃

dλ̄
+ r

dB̃

dλ̄

)
− dC̄

dλ̄

)
(179)
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Substitute out dH̃
dλ̄

= H̃
λ̄η
, dB̃
dλ̄
≈ Ω̃

Γ−r
dÑ
dλ̄

and dC̄
dλ̄

= − 1
λ̄2

= − C̄
λ̄

=
∂H̃
∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC̄

dλ̄

1

λ̄

(
C̄ − w̃H̃ − r Ω̃

Γ− r
Ñ

)
(180)

In steady state C̃ − w̃H̃ = rB̃

dH̃

dA
=

∂H̃
∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC̄

dλ̄

1

λ̄

(
rB̃ − r Ω̃

Γ− r
Ñ

)

From (66) B̃ − Ω̃
Γ−r Ñ = B0 − Ω̃

Γ−rN0

dH̃

dA
=

∂H̃
∂A

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC̄

dλ̄

r

λ̄

(
B0 −

Ω̃

Γ− r
N0

)

Proof of Proposition 5. Labor: Totally differentiatingH = H(λ̄, N,A) keep-
ing N fixed yields.

dH(0)

dA
=
dH

dλ̄

dλ̄

dA
+
∂H

∂A
(181)

= −∂H
∂A

[
(1 + η − ν)(w dH

dλ̄
+ r dB

dλ̄
)− ν dC

dλ̄
)

ν
(
w dH

dλ̄
+ r dB

dλ̄
− dC

dλ̄

) ]
(182)

As in the long-run case, the income and substitution effects of a technological
improvement work in opposite directions. The difference between the long-
run and impact multiplier is accounted for by the effect of entry, so that

dH(0)

dA
− dH(∞)

dA
=
dH

dN

dN

dA
=
dH

dN

[
∂N

∂A
+
dN

dλ̄

dλ̄

dA

]
(183)

=
dH

dN

∂Ñ

∂A

[
−dC̄

dλ̄

w̃ dH̃
dλ̄

+ r dB̃
dλ̄
− dC

dλ̄

]
(184)

sgn

[
dH(∞)

dA
− dH(0)

dA

]
= sgn HN = sgn [1− ν]
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Wages:

dw(0)

dA
=

1

µ
YHH

dH(0)

dA
+

w

Aν
(185)

Hence

dw(0)

dA
− dw(∞)

dA
=

1

µ
YHH

dH(0)

dA
(186)

sgn

[
dw(0)

dA
− dw(∞)

dA

]
= sgn [ν − 1] (187)

The difference between the long-run and short run wage effect depends on
whether an increase in employment increases the MPL (ν > 1, YHH > 0), or
decreases it (ν < 1, YHH < 0).

Proof of Proposition 6.

dP(0)

dA
=

1

µ

(
N

H

)(1−ν)

+ (ν − 1)
A

H

[
N

H

]1−ν
dH(0)

dA
+

[
N

H

]
φ

H

dH(0)

dA
(188)

=
P̃
νA

+ (µ− 1)P̃ dH(0)

dA
=
dP̃
dA

+ (µ− 1)P̃ dH(0)

dA
(189)
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