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Abstract

In this paper we study the e!ects of opening an economy, with increasing returns in the
production of nontraded goods, on the existence of multiple Pareto-ranked stationary
equilibria, local indeterminacy and bifurcations. We consider a standard overlapping
generation model of a small open economy, with a "xed exchange rate, where labour is the
only input and money the only asset. We "nd that when there are increasing returns, the
open economy may display persistent equilibrium endogenous #uctuations (deterministic
and stochastic) in the balance of trade and main macroeconomic aggregates. ( 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper develops a simple model of a small open economy showing how
persistent #uctuations in the balance of trade and main macroeconomic aggreg-
ates can arise into the system without appealing to shocks to the fundamentals.
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In particular, we study the impact of openness on the uniqueness/multiplicity of
steady states, local indeterminacy, deterministic and stochastic endogenous
#uctuations in an economy with increasing returns to scale and imperfect
competition.

We consider a simple OG open economy model, with money, in which there is
a traded and a nontraded sector. The exchange rate is assumed "xed, the price of
traded goods being determined by the world market. For simplicity, we assume
that the traded good is an endowment which is constant over time. The
technology for producing the nontraded good with labour exhibits increasing
returns to scale. There is imperfect (Cournotian-monopolistic) competition in
the nontraded sector output markets with free entry. In our set up the (endogen-
ous) equilibrium number of "rms is constant and so is the mark up. The model is
designed to be as simple as possible, and we abstract away from capital
accumulation. In this economy, money is the only asset and is predetermined (its
value at time t is determined by the state of the economy in the previous period,
i.e. by the balance of trade). Technology and preferences are time invariant, as is
the price of traded goods (exogenously "xed, due to the small country and "xed
exchange rate assumptions).We disregard exogenous shocks in order to focus on
the role played by underlying preference and technology parameters in generat-
ing endogenous #uctuations.

The present paper develops the existing studies of endogenous #uctuations in
the macroeconomic context to the case of an open economy. The earliest studies
followed Grandmont (1985) in focussing on the closed economy case. We follow
his approach by assuming that there is no capital: however, we di!er from him in
assuming that there are increasing returns in production, and also that there are
two sectors (traded and nontraded) so that the dynamic system is two dimen-
sional. This complements the closed economy models with capital, in which
endogenous #uctuations are possible with positive labour supply elasticities (for
the case of constant returns, see Reichlin (1986, 1992), Woodford (1986) and
Grandmont et al. (1998)) or, for the case of increasing returns, recent works by
Lloyd-Braga (1995a,b) and Cazzavillan et al. (1998).

In our study we explore the conditions under which local deterministic and
stochastic endogenous #uctuations may emerge into the system by using the
methodology of Grandmont et al. (1998). The advantage of this method is that it
provides a simple and comprehensive geometrical way to analyse the behaviour
of equilibrium trajectories nearby a steady state, without appealing to particular
speci"cations of preferences or technology. We "nd that there are four funda-
mental parameters determining the local dynamic properties of the model: the
extent of returns to scale; the degree of substitutability between traded and
nontraded goods; the propensity to consume nontraded goods; the elasticity of
labour supply. Our main results are the following.

First, we characterise su$cient conditions for the existence of a steady-state
solution (Proposition 1) and the existence of more than one steady state
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1The importance of increasing returns relates nicely to its increasing use in open economy
RBC literature (e.g. Obstfeld and Rogo!, 1995; Beaudry and Devereux, 1995) although the
context is rather di!erent. As is common practice in the RBC literature, these papers only focus on
saddle point stable equilibrium paths. They both analyse two-country models with capital accumu-
lation and look at the e!ect of temporary and permanent monetary shocks on main macro
aggregates.

(Propositions 2 and 3). We "nd that the equilibria are Pareto ranked (Proposi-
tion 4): steady states with higher levels of nontraded consumption Pareto
dominate those with lower levels. A constant elasticity formulation of prefer-
ences and technology illustrates Propositions 1}4.

Second, we analyse the local dynamics of the system and consider local
stability and the emergence of local bifurcations. We "nd that (Proposition 5),
whilst for some parameter values the economy is saddle point stable, for other
parameter values local bifurcations (transcritical or -ip) can occur and local
(deterministic and stochastic) endogenous #uctuations emerge. In addition,
stochastic endogenous #uctuations can also occur when the nearby steady state
is a sink (i.e. locally indeterminate) or close to a stable periodic cycle (i.e.
supercritical #ip bifurcation).

In general, endogenous #uctuations are more likely if returns to scale
are larger and the economy is more open. Imperfect competition is important
but not crucial in our model: (internal) increasing returns to scale in produc-
tion are only possible if there is imperfect competition. However, if increasing
returns are external, then much the same results would hold under perfect
competition. Thus it is the degree of increasing returns (internal or external)
that is the most fundamental requirement: if there are constant or de-
creasing returns to scale, then endogenous #uctuations are not possible.1 Open-
ness is crucial for the emergence of deterministic cycles. In the closed economy
version of our simple model (see Lloyd-Braga, 1995a), #ip bifurcations cannot
occur with a positively sloped labour supply even with increasing returns to
scale.

Our paper departs from the existing intertemporal open macroeconomic
literature. One of the major puzzles in the intertemporal approach to the current
account has been its excess volatility (Baxter, 1995). In particular, if one views
supply shocks as being the driving force behind macroeconomic #uctuations,
these need to be persistent shocks if they are to explain output and employment.
Persistent supply shocks should lead to persistent #uctuations on the current
account (see Obstfeld and Rogo! (1996) for a survey), but trade and current
accounts appear to be more volatile than predicted by this approach. Our
approach, in contrast, explains the possibility that the volatility of the current
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2One frequent objection to OG models with two-period lived agents is that #uctuations occur on
time scales long compared to the lifetime of agents. However, in the paper we show that, in our set
up, it is possible to reinterpret the household's behaviour as coming out of in"nitely long lived agents
consuming and working in every period and facing capital market imperfections, as in Woodford
(1986). Therefore, the periods' length can be made compatible with business cycle frequencies.

3See d'Aspremont (1995). Producers in each market i behave à la Cournot, taking as given the
prices of the other markets.

account and related macro aggregates is not the result of exogenous shocks, but
rather the result of endogenous #uctuations.2

The plan of the paper is as follows. In Section 2 we present the basic
macroeconomic model. In Section 3 we consider the equilibrium dynamic
system and explore its steady-state properties. In Section 4 we undertake the
technical analysis of local dynamics and bifurcations around a steady state,
seeing the relationship between the underlying parameters and the type of
endogenous #uctuations that can emerge. In Section 5 we discuss the economic
intuition of the results of Section 4. In Section 6 we conclude.

2. The model

In this paper we consider an OG model for a small open economy over an
in"nite sequence of discrete time periods t"1,2,2,R. There are two com-
posite commodities: one is a nontraded good c which is produced and consumed
domestically; the other is an internationally traded good x that is produced and
consumed domestically and abroad (we follow convention and aggregate over
goods which are net imports and those that are net exports). We assume that c is
a composite good of a large "xed number of di!erent goods, de"ned by a utility
index of Dixit}Stiglitz type. Each good c

i
is produced by n "rms under Cour-

notian-monopolistic competition,3 with free entry and exit. Firms have identical
technology exhibiting increasing returns to scale (due to decreasing marginal
cost).

Money is the numeraire and is the only asset (there is assumed to be no
government in this economy). The exchange rate is "xed and normalized to
unity. The price of the traded good, p*, is then "xed (small country assumption).

Population is constant over time and is composed by a "nite number of
households living for two periods and acting under perfect foresight. In each
period there are h young households and h old households. When young,
households work, receive pro"ts and save money; when old, they spend money
and consume. Households have identical preferences described by the separable
utility function:;(c

t`1
, x

t`1
)!<(N

t
/B), where B'0 is a scaling parameter and

N
t
is the labour supply. We assume the following:
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Assumption 1. The function ;(c, x) is a continuous concave function,
homogenous of degree one for all c, x50, and C3 for c, x'0 with r large
enough. Moreover, ;@

c
,;@

x
'0 for c, x'0 and lim

c@x?0
;@

c
/;@

x
"$R,

lim
c@x?`=

;@
c
/;@

x
"0. <(N

t
) is a continuous function for 04N4N*, where N*

is the workers endowment of labour (possibly in"nite); and C3 for 0(N(N*
with r large enough. It also satis"es <@,<A'0 and lim

N?NH <A(N)"#R.

From now on we drop the time subscript whenever this does not give rise to
any ambiguity.

2.1. Producers

Looking more closely at the nontraded sector, there are many markets
i"1,2, s, each one with n "rms k"1,2, n. Firms produce under the same
technology, given by

y"Nr, r51 (1)

where y and N are, respectively, the output and labour input per "rm in each
period.

Each household has a CES subutility function over the outputs of the
nontraded sector, with elasticity of substitution 1/k'1, i.e.:

c"A
1

sB
k@(1~k)

C
s
+
1

c1~k
i D

1@(1~k)
(2)

yielding the inverse demand curve:

p
i
"(c

i
)~k p (c/s)k (3)

where p
i
is the price of each nontraded good and p is the aggregate price index

for c, which is given by

p"As~1
s
+
1

p(k~1)@k
i B

k@(k~1)
. (4)

Firms in each sector i decide the quantity to produce taking into account the
e!ects of its own decisions at the sector level, but consider negligible any
possible e!ect on output and price at the economy level. The labour market is
perfectly competitive and "rms take the wage rate (w) as given. A "rm k in sector
i solves the following problem:

MAX
Nik|R``

( p
i
Nr

ik
!wN

ik
)

s.t. Eq. (3), hc
i
"+

j

NMM r
ij
#Nr

ik
; j"1,2, n, jOk . (5)
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4Using similar procedures as in d'Aspremont (1995) it can be shown that second-order conditions
are satis"ed and that any Cournot equilibrium must be symmetric in quantities across the active
"rms.

5There are restrictions on the feasible pairs of (k, r) given by the constraint that n52: in
particular, if k(2, then r42/(2!k). For the case of k"1, we get the restriction r42 as in
Lloyd-Braga (1995a).

At the symmetric Cournot}Nash equilibrium4 within sector i, the "rst-order
condition can be written as follows:

p
i A

n!k
n B"

w

r
N1~r

ik
. (6)

Eq. (6) gives the condition for each "rm to be on its reaction function within
sector i in a symmetric equilibrium. The number of "rms is determined by the
zero pro"t condition (given our free entry assumption), i.e. the own-product
wage equals the average product of labour:

w/p
i
"Nr~1

ik
. (7)

If we combine the two equations above, we obtain the equilibrium number of
"rms with free entry: n"kr/(r!1). This result says that the equilibrium
number of "rms in each sector is determined by the taste and technology
parameters (k, r), independently of the rest of the model.5 This feature is taken
from Lloyd-Braga (1995a) with the result that aggregate output varies in
proportion to output per "rm in each industry. Moreover, the mark up is
constant and equals r51. Note that if r"1 an in"nite number of "rms would
enter the market and the market power would vanish. Perfect competition is
then the limiting case of constant returns to scale.

Since "rms are identical and every sector i faces identical demand, the
equilibrium is symmetric across sectors. Therefore, N

ik
"N and p

i
"p. To

simplify the exposition we assume that the total number of "rms equals the
number of households in each generation: h"sn. Using Eqs. (2), (5) and (7) the
following equilibrium conditions must be satis"ed in each period t:

c
t
"Nr

t
, (8)

w
t
N

t
"p

t
Nr

t
. (9)

Eq. (8) de"nes the equilibrium in the nontraded good sector while Eq. (9)
determines the labour demand curve with an elasticity ed"1/(r!1).

Before analysing the traded sector, it is important to stress that the above
equilibrium conditions apply also to the case of a perfectly competitive economy
with externalities. This analogy holds as long as: (i) the degree of social increasing
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6Suppose that the nontraded sector is a!ected by a productive externality (as in e.g. Benhabib and
Farmer (1994) or Cazzavillan et al. (1998)) such that labour marginal productivity is positively
a!ected by an increase in the aggregate labour stock; i.e. y

ik
"NlN

ik
, where Nm is the externality and

N is the average level of employment. Since Nm (as an externality) is taken as given by each "rm, the
marginal productivity of labour is w/p"Nm. From direct inspection of Eq. (9), one can easily see
that these expressions are identical if we assume l"r!1.

7There are a variety of ways of modelling households in a two-sector open economy. See Obstfeld
and Rogo! (1996), (Section 10.2) for an approach similar to ours. Since we are interested in the
intertemporal features of the model, we have opted for the most simple intersectoral structure: we
have not allowed for variable production in the traded sector (as in Dixon (1994)). Note that the
"xed output assumption can be reinterpreted in another way, i.e. as the result of a model with sector
speci"c workers and no labour mobility across sectors. In this case the output of the traded sector
will be constant, so long as: (i) workers in the traded sector have a constant marginal disutility of
labour; (ii) the marginal productivity of labour in the traded sector is constant and higher than the
reservation wage (measured in units of traded goods); (iii) there is perfect competition in this sector.
In that case, revenues from the traded sector take the form of wages. Assuming that all households
have the same utility ;(c, x), the distribution of income will be irrelevant for the equilibrium
outcome and the same equilibrium conditions apply.

returns, (r!1), is constant and identical in both set ups; (ii) pro"ts are zero and
the mark up is constant when increasing returns are internal to the "rm.6 This
implies, in turn, that our analysis of endogenous #uctuations in a small open
economy can be extended to a wider range of market structures.

As regard to the modelling of the traded sector, we assume, for simplicity, that
the home production of the traded good is constant through time and
exogenously "xed at a level xN '0. The "xed output can be viewed as due to
a natural resource or capacity constraint, or re#ecting some &Natural rate' of
output in that sector, una!ected by the rest of the economy.7 The revenue from
the traded sector in every period t is p*xN , which for simplicity we assume takes
the form of pro"ts. Whilst we have disaggregated the nontraded sector we will
not disaggregate the traded sector. Since we are not modelling it as imperfectly
competitive, and price and quantity produced are both exogenous here, we can
treat it as a single sector representing some composite good.

2.2. Households

An household born at t50 can be seen as solving:

MAX
(ct`1,xt`1,Nt,Mt)|R4

``

(;(c
t`1

, x
t`1

)!<(N
t
/B))

s.t. M
t
"w

t
N

t
#p*xN , (10)

p*x
t`1

#p
t`1

c
t`1

"M
t
, (11)
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8As an in"nitely lived agent our representative household maximises:

=
+
t/1
Cbt~1;(c

t
, x

t
)!bt<(N

t
/B)D

where 0(b(1 is the discount factor and the functions; and < satisfy the same assumptions as in
our OG model. The budget constraints she/he has to face, in period t, are

M
t
#pHx

t
#p

t
c
t
" w

t
N

t
#pHxN #M

t~1
and pHx

t
#p

t
c
t
4M

t~1
,

where, the "rst one is the usual budget constraint and the last is the cash-in-advance constraint upon
households' consumption purchases (i.e. since wages and pro"ts are received only at the end of
period t, a given period's expenditures must be "nanced out of money held at the beginning of the
period). The solution to this problem is identical to the OG case that we consider as long as the
cash-in-advance constraints are binding. This happens if along an equilibrium trajectory the
following condition holds at all times:

d;

dc
t

'b
d;

dc
t`1

p
t

p
t`1

.

Since b(1, the above condition is always satis"ed at a steady-state solution. Therefore, for an
equilibrium trajectory su$ciently close to the steady state, as we suppose in our local dynamic
analysis, the condition holds as well.

where M
t
is the (per capita) stock of money at the outset of period t#1 (or end

of period t). The constraints (10) and (11) show that households save through
money holdings the income received while young to be spent in consumption
goods while old. Note that using Eqs. (8)}(11) we obtain the asset accumulation
equation:

M
t
!M

t~1
"p*(xN !x

t
).

The equation above shows, as expected, that in an economy with no government
and "xed exchange rates (where money is the unique asset) the balance of trade
determines the dynamics of the money stock.

It should be also emphasised that, in this setting, it is always possible to
reinterpret the household's behaviour, at least nearby the steady state, as
coming out of in"nitely long-lived agents consuming and working in every
period, but subject to cash-in-advance constraints, as in Woodford (1986).8

The equilibrium conditions for the household are obtained as follows. Since
;(c, x) is homogeneous of degree one, we can always write

;(c, x)"x.u(a), with a,c/x.

We can then de"ne the marginal utility of the nontraded and traded good
respectively, as follows:

g(a),u@(a) , q(a),u(a)!a.u@(a).
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From the de"nitions of g(a) and q(a), the elasticity of substitution p(a) between
the traded and the nontraded goods can be de"ned as:

1

p(a)
,

d log q(a)/g(a))

d log a
" e

q
(a)!e

g
(a) (12)

where e
g
(a),ag@(a)/g(a) and e

q
(a),aq@(a)/q(a) are the elasticities of g(a) and q(a),

respectively. Under Assumption 1 it follows that

Assumption 2: u(a) is twice continuously di!erentiable, with g(a)'0 and
g@(a)(0, for a'0 and lim

a?0
g(a)/q(a)"#R, lim

a?`=
g(a)/q(a)"0.

Using this notation, the "rst-order conditions for the household prob-
lem are given by the budget constraints (10)}(11) and by the following
expressions:

(1/B)<@(N
t
/B)

w
t

"

q(a
t`1

)

p*
, (13)

p
t`1

c
t`1

"a(a
t`1

)M
t
, (14)

where a(a) represents the propensity to consume nontraded goods, which is
de"ned through the following relationship:

g(a)/q(a)"a(a)/a(1!a(a)). (15)

For later use, note that by use of Eqs. (11) and (14) we obtain that

p
t`1
p*

"

a(a
t`1

)

a
t`1

(1!a(a
t`1

))
. (16)

Finally, note that a small a and a large p tend to describe the &potential'
openness of the economy. From Eqs. (11) and (14) it can be seen that (1!a) is
the propensity to consume traded goods, which is a commonly used proxy for
the degree of openness. On the other hand, the elasticity of substitution in
consumption, p, measures the willingness of consumers to substitute nontraded
with traded goods.

2.3. The equilibrium dynamic system

To obtain the equilibrium dynamic system of our model we proceed as
follows. By use of Eqs. (8)}(10) and Eq. (14) we derive the "rst equation govern-
ing the dynamics:

m
t
"a(a

t
)m

t~1
#xN with m,M/p*. (17)
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9Note that in our simple model, there is no di!erence between the trade balance, the current
account and the balance of payments. There is no international mobility of inputs, and money is the
only asset varying only because of the trade balance.

10Note that at time t, m
t~1

is determined by the state of the economy in the previous period,
namely by the balance of trade in t!1. This implies that, although changes in expectations of the
young at t (about t#1) will alter equilibrium at date t, the expenditure of the old is "xed and
determined by past history.

The above corresponds to the asset accumulation equation, re#ecting the trade
balance dynamics.9 The second dynamic equation is obtained from Eqs. (8), (9),
(13) and (14):

q(a
t`1

)"
t(N

t
)

a(a
t
) m

t~1

with t(N),
N

B
<@(N/B). (18)

To evaluate N
t
, we put together Eqs. (8), (14) and (16):

N
t
"[m

t~1
a
t
(1!a(a

t
))]1@r. (19)

Thus, N
t
"N(m

t~1
, a

t
). Eqs. (17)}(19) govern the dynamics of the model: given

the initial values for (m
t~1

, a
t
), we are able to determine (m

t
, a

t`1
). Indeed, by

knowing (m
t~1

, a
t
) we obtain m

t
through Eqs. (17) and (19) determines N

t
. Then

from Eq. (18) we obtain a
t`1

since, by Assumption 1, q(a) is an invertible
function.

De,nition: An intertemporal equilibrium with perfect foresight is a sequence
(m

t~1
, a

t
)3R2

``
, t"1, 2, 2, R, such that

m
t
"a(a

t
)m

t~1
#xN , q(a

t`1
)"

t[m
t~1

a
t
(1!a(a

t
))]1@r

a(a
t
) m

t~1

. (20)

Eq. (20) de"nes a two dimensional dynamic system, uniquely determined in the
forward direction, with one predetermined variable10 (m).

3. Steady-state analysis

In this section we will be studying the existence, unicity or multiplicity of
stationary states for the dynamical system de"ned by Eq. (20). Our analysis will
closely follow Cazzavillan et al. (1998) and we refer the reader to Section 3 of
their paper for a thorough treatment of the issue.
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3.1. Existence

First of all, note that a steady state (m
t~1

"m, a
t
"a) for all t, is a solution of

Eq. (20) if and only if:

m(1!a(a))"xN , (21)

t((axN )1@r )"ma(a)q(a). (22)

From Eq. (21) it follows that, as expected, the balance of trade is zero at a steady
state (i.e. x

t
"xN ). Using Eqs. (8), (14), (16) and (21) we derive the steady-state

level of employment, i.e.:

Nr"axN . (23)

In view of Eq. (15) and Eqs. (21)}(23) "nding a steady state amounts to "nding
a value for N'0 that satis"es:

t(N)"NrgA
Nr

xN B where t(N),
N

B
<@(N/B). (24)

Then, for a given N'0 satisfying Eq. (24), m and a are uniquely determined by
Eqs. (21) and (23).

In what follows we ensure the existence of a steady state, namely with N"1,
by choosing an appropriate value of the scaling parameter B, so that

t(1)"gA
1

xN B . (24a)

From Assumption 1 on <( ) ) we know that the function
t(N),(N/B)[<@(N/B)] is increasing in N and decreasing in B; moreover, from
Assumption 2, g(1/xN ) is positive and de"ned over the interval (0, #R). Hence,
if lim

N?0
t(N)(g(1/xN )(lim

N?NHt(N), there is only one value for B'0 such
that Eq. (24a) is satis"ed.

Proposition 1 (Existence of the steady state). ;nder Assumption 1 on <( ) ),
Assumption 2 on g(a) and lim

N?0
t(N)(g(1/xN )(lim

N?N*
t(N), let B be the

unique solution of (1/B)<@(1/B)"g(1/xN ), for a given value xN 3(0,#R); then,
(m, a)"(xN /(1!a(1/xN )), 1/xN ) is a stationary solution of the dynamical system (20)
with N"1.

Before studying the issue of uniqueness and multiplicity of solutions
to Eq. (24), it is useful to derive few relationships linking the elasticities of
g(a), q(a), a(a) with p(a), and the expression de"ning the elasticity of the labour
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11Di!erentiating (1/B)<@"q(a
t`1

)(p
t
/p*)(w

t
/p

t
). yields: (1/B2)<AdN

t
"q(a

t`1
).(p

t
/p*)d(w

t
/p

t
). This

can be rewritten as (1/B)<AdN
t
"<@(p

t
/w

t
)d(w

t
/p

t
); therefore, [(w

t
/p

t
)/N

t
][dN

t
/d(w

t
/p

t
)]"B<@/<AN

t
.

supply. From the obvious fact that ag@(a)#q@(a) "0 and by use of Eq. (15),
we obtain

e
q
(a)

e
g
(a)

"!A
a(a)

1!a(a)B. (25)

Hence, using Eqs. (12) and (25) we can easily derive an expression for the
elasticity of g(a), i.e.:

e
g
(a)"!A

1!a(a)

p(a) B. (26)

From the de"nition of the propensity to consume nontraded goods, given in
Eq. (15), and from Eq. (25) it follows that the elasticity ea(a),aa@(a)/a(a) is equal
to 1!a(a)#e

g
(a) which, by use of Eq. (26), corresponds to

ea(a)"1!a(a))C1!
1

p(a)D. (27)

From Eq. (13) we can easily derive the labour supply elasticity11which, from
Assumption 1, is positive:

e4(N
t
)"
< @(N

t
/B)B

<A(N
t
/B)N

t

'0. (28)

From Eq. (28), recalling the de"nition of t(N) in Eq. (18), and in view of
t@(N),<@(N/B)(1/B)#(N/B)<A(N/B)(1/B), we can write

Nt@(N)

t(N)
"1#

1

e4(N)
. (29)

3.2. Uniqueness versus multiplicity

So far we have shown that "nding a stationary solution for the dynamics of
the system requires "nding a value N'0 that satis"es Eq. (24) or, more simply,
that satis"es

F(N),
t(N)

NrgA
Nr

xN B
"1, (30)

where, given our Assumptions 1 and 2, F(N) is a continuous positively valued
function for N3(0, N*). Hence, studying the existence of multiple steady states
and their numbers involves studying the number of solutions in N for Eq. (30).
In particular, if F(N) is a monotonic function (i.e. either F@(N)'0 for
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12See Cazzavillan et al. (1998) for a thorough analysis of the issue.

N3(0,#R) or F@(N)(0 for N3(0,#R)) there exist at most one steady state,
i.e. the one de"ned in Proposition 1. On the other hand, if F@(N) changes its sign
only once then, at most two steady-state solutions generically exist. Finally, if
F(N) is constant then, by Proposition 1, F(N)"F(1)"1 for all values of N and
there is a continuum of steady states (see Cazzavillan et al. 1998, Section 3).

To check whether F(N) is monotonic or not we now analyse the sign of F@(N).
Di!erentiating F(N) and by use of Eqs. (26) and (29), yields

F@(N)"
Z(N)

N
F(N)

where

Z(N)"C1#
1

e4(N)
!r#rA

1!a(a)

p(a) BD for a"
Nr

xN
. (31)

Since N'0 and F(N)'0, studying the sign of F@(N) is equivalent to studying
the sign of the function Z(N); the latter has the advantage of depending just on
elasticities and other parameter values. The following propositions summarise
the main results.

Proposition 2 (Uniqueness of the steady state).;nder the assumptions of Proposi-
tion 1, there is at most one steady state, with N"1, if one of the following
conditions is satis,ed:

(i) (p(a)/r)(1#1/e4(N))#(1!p(a))'a(a)NZ(N)'0 for all N'0,
(ii) (p(a)/r)(1#1/e4(N))#(1!p(a))(a(a)NZ(N)(0 for all N'0.

The proposition above shows that, when p(a), e4(N) and a(a) are constant,
either con"guration (i) or (ii) is generically bound to occur and the steady state is
unique. Note that the case of constant returns to scale falls into con"guration (i).
In fact, with r"1, Z(N)"1/e4(N)#(1!a(a))/p(a), which is always positive.
Therefore, under constant returns only one steady state generically exists.
However, as we shall see, with increasing returns to scale multiple steady-state
equilibria are possible. In this case, a higher nontraded output enables economies
of scale to be exploited, leading to a lower relative price and higher demand.
Finally, notice that in the special case Z(N)"0 for N3(0, N*) a continuum of
steady states will occur, if the assumptions of Proposition 1 are satis"ed.

We address now the issue of multiplicity versus unicity by analysing in what
circumstances the conditions stated in Proposition 2 are violated. We focus our
attention on the case in which F@(N) changes sign at most only once. In this case
F(N) is either single caved or single peaked, so that there are at most two steady
states.12 These are indeed the cases that arise in the constant elasticity speci"ca-
tion that we are considering in Section 3.4.
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Proposition 3 (Multiplicity of steady states). Given Assumptions 1 and 2, there are
at most two steady states if one of the following conditions is satis,ed:

(i) [(1!a(a))/p(a)] is increasing in a and e4(N) is nonincreasing in N,
(ii) [(1!a(a))/p(a)] is decreasing in a and e4(N) is nondecreasing in N.

Under case (i), Z(N) is an increasing function. If Z(0)(0 and Z(N*)'0 then
Z(N) changes its sign exactly once. Under case (ii), Z(N) is a decreasing function.
Hence, if Z(0)'0 and Z(N*)(0, Z(N) also changes its sign exactly once.

Therefore, if the assumptions of Proposition 1 are satis"ed and Z(N) do not
vanish at N"1 (i.e. Z(1)O0), there are exactly two steady states whenever
either (i) or (ii) of Proposition 3 holds, provided that appropriate boundary
conditions are satis"ed (namely that F(N)!1 has the same sign for N close to
zero and N close to N*).

In the case where Z(N) vanishes for N"1 only one steady state exists.
However, as discussed in Cazzavillan et al. (1998) the uniqueness of the steady
state does not persist. Therefore we can treat it as a nongeneric case. Later on in
the paper, where the local dynamics and bifurcations around the steady state are
studied (see Section 4 below), it can be checked that the case just described
corresponds to the occurrence of a transcritical bifurcation (i.e. exchange of
stability properties between two steady states). In other words, by slightly chang-
ing the value of e4(1), Z(1) crosses the value zero and two steady state coexist.

3.3. Welfare analysis of the multiple steady states

In this section we analyse the welfare properties of the two steady states
studied in the section above, and check if one Pareto dominates the other.
Assuming that Proposition 3 holds, and letting (m

1
, a

1
) and (m

2
, a

2
) be two

steady states, it can be shown that the steady state with a lower a is Pareto-
dominated by the other. Suppose that a

1
'a

2
. From the equilibrium conditions

(23) and (8), and recalling that at a steady state x
t
"xN , it follows that N

1
'N

2
and c

1
'c

2
. Hence, consumption of the old households is higher in the "rst

steady state and so it is their welfare. Moreover, the o!er curve (in N and c) of
the young generation for steady-state solutions (x

t
"xN ) is de"ned by

t(N)"ag(a)xN , where a"c/xN . Since t(N) is positively sloped, the o!er curve is
also positively sloped if (1!a(a))/p(a)(1, for all a'0 (i.e. from Eq. (26):
1#e

g
(a)'0). Therefore, in this case, welfare of the young is also higher in the

"rst steady state.

Proposition 4. ;nder the assumptions of Proposition 3, let (m
1
, a

1
) and (m

2
, a

2
) be

two steady states. Given Assumptions 1 and 2 and assuming further that
(1!a(a))/p(a)(1, for a'0, it follows that (m

1
, a

1
) Pareto-dominates (m

2
, a

2
)

for a
1
'a

2
.
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13Checking if the appropriate boundary conditions hold implies checking if lim
N?0

F(N)'1 and
lim

N?`=
F(N)'1 are satis"ed when F(N) is single caved, and if lim

N?0
F(N)(1 and

lim
N?`=

F(N)(1 hold when F(N) is single peaked. With CES preferences the function F(N)
becomes ( see Eq. (30))

F(N)"
Nb~r

Cs#(1!s)A
Nr

xN B(1~p)@pD ~1@(1~p)sBb

.

With p(1 and b(r, the function F(N) is single caved (case (i) Proposition 3 holds) and, it can be
easily checked that lim

N?0
F(N)"lim

N?`=
F(N)"#R. Therefore, the single caved function

F(N) has the same sign when is close to the lower and upper bounds of N and there are exactly two
steady states (ignoring the nongeneric case of F(N)"0 when N"1). See Cazzavillan et al. (1998) for
further details.

3.4. The case of CES economies

We now analyse the case where preferences display constant elasticities. In
particular, we assume the following utility functions:

u(a)"[sa(p~1)@p#(1!s)]p@(p~1) where 0(s(1, p'0 (32)

and

< A
N

BB"
1

b A
N

BB
b

where b"1#
1

e4
, B'0. (33)

Where, Assumptions 1 and 2 are all satis"ed; and the scaling parameter B is
"xed so that (m, a)"(xN /(1!a(1/xN )),1/xN ) is a steady state (as from Proposition
1). In this case, the propensity to consume nontraded goods is given by

a(a)"
s

s#(1!s)a(1~p)@p
(34)

which is increasing (decreasing) in a for p'1 (p(1). One can also easily check
that the function Z(N) de"ned in Eq. (31) is increasing, constant or decreasing in
a depending on whether p(1, p"1, p'1. We analyse these three cases
in turn:

p(1: a(a) decreases from 1 to 0 and Z(N) goes from (b!r) to b!r(p!1)/p
as a increases from 0 to #R. Therefore, if b'r case (i) of Proposition
2 applies and the steady state is unique. For b(r, Z(N), being an increasing
function (case (i) of Proposition 3 applies), changes its sign from negative
to positive exactly once. Therefore, provided that Z(N) does not vanish at
N"1, there are exactly two steady states, since boundary conditions are
satis"ed.13
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14 In that case, with p'1 and r(p!1)/p(b(r, the function F(N) is single peaked (case (ii)
Proposition 3 holds) and lim

N?0
F(N)"lim

N?`=
F(N)"0. Thus, the required boundary condi-

tions are satis"ed (see footnote 13).

15On the issue of indeterminacy and increasing returns (both internal and external to the "rm) see,
in particular, Benhabib and Farmer (1994) and Farmer and Guo (1994).

16Recall that high values of p and low values of a are here considered as symptoms of highly open
economies.

p'1: a(a) increases from 0 to 1 and Z(N) goes from b!r (p!1)/p to (b!r)
as a moves from 0 to #R. As before, if b'r case (i) of Proposition 2 applies
and the steady state is unique. If b(r(p!1)/p, again there is only one steady
state (case (ii) of Proposition 2 applies). Whereas, if r(p!1)/p(b(r two
steady states generically exist (provided that Z(1)O0) since the appropriate
boundary conditions are satis"ed.14 Note that, in this case, Z(N) is a decreasing
function (case (ii) of Proposition 3) changing its sign from positive to negative
values exactly once.

p"1: a(a)"s. Since Z(N) is constant and Proposition 2 applies. There is
a unique steady state (or a continuum of steady states in the nongeneric case
Z(N)"0).

For pO1 multiple equilibria arise when the elasticity of labour supply is
larger than the elasticity of labour demand (i.e. the labour supply schedule is
#atter than the labour demand schedule and the latter is upward sloping due to
increasing returns). Consider the case p(1: under that con"guration the
condition b(r corresponds to 1/e4((r!1)"1/e$. Therefore, so long as the
economy exhibits some degree of increasing returns to scale the stationary state
may not be unique so that indeterminacy emerges.15

4. Local dynamics and bifurcation analysis

In this section we analyse the role of openness16 (and increasing returns to
scale) on the emergence of local endogenous #uctuations. Assuming that
a steady state exists (Proposition 1), we proceed to local stability and bifurcation
analysis by use of the geometrical method developed by Grandmont et al. (1998).
The latter applies to discrete time nonlinear two-dimensional economic systems;
does not require any particular preferences and technology speci"cation and
provides a full characterization of the equilibrium trajectories around a steady
state. In particular, we will show that

(1) When the economy is su$ciently open, local deterministic endogenous
#uctuations (cycles of period two) emerge into the system.
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17See Azariadis (1993), (pp. 63,64), for details.

(2) The emergence of local stochastic endogenous #uctuations is in#uenced by
the degree of openness in a mixed way: while high values of p help the
occurrence of local indeterminacy, low values of a make its occurrence more
di$cult.

(3) Increasing returns to scale are necessary for the emergence of local (deter-
ministic and stochastic) endogenous #uctuations, as it would be in the
equivalent closed economy set-up.

This section will be divided into three parts: "rst, we will outline the general
method; second, we will apply the method to our model; thirdly, we will explore
how openness a!ects the equilibrium dynamics of the economy.

4.1. The general framework

The implementation of the method that we are going to use involves four
steps: (i) expressing the determinant (D) and trace (¹) of the Jacobian matrix, for
the dynamic system under analysis, as a function of the relevant &parameters' of
the model; (ii) obtaining the relationship, say D, linking ¹ and D for di!erent
given values of one of the parameters, say j, i.e. the points (¹(j), D(j)) where j is
the chosen bifurcation parameter; (iii) representing the locus of points (¹(j),
D(j)) in the space (¹, D) and studying its behaviour as j changes; (iv) analysing
how the relationship D is moving in the space (¹, D) with changes in the values
of the other relevant parameters of the model.

In what follows we brie#y explain the importance of steps (iii) and (iv), which
are indeed the core of the geometrical method. A detailed application of the
methodology to our particular model is given in Sections 4.2 and 4.3.

To study local stability, we follow the usual procedure of analysing the
eigenvalues of the Jacobian matrix (evaluated at a steady-state solution). In
particular, note that for two-dimensional dynamic systems we can always de"ne
three relevant lines in the space (¹, D): line AC (D"¹!1), line BC (D"1,
D¹D(2) and line AB (D " !(¹#1)). See for instance Fig. 1 (disregarding the
line D

1
, for the moment) in Section 4.2.

The lines AB, BC and AC in Fig. 1 divide the (¹, D) space into three di!erent
regions according to the dynamic properties of the steady state (e.g. source, sink,
saddle),17 and enable us to study the emergence of local endogenous #uctuations
(stochastic and deterministic).

As regard to stochastic endogenous #uctuations we know that, if a steady
state is a sink, local stochastic equilibria driven by self-ful"lling expectations can
arise. In our model this corresponds to indeterminacy of the steady state, given
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18See Woodford (1986) and Guesnerie and Woodford (1992) for more details. In short, indeter-
minacy will arise when the number of stable eigenvalues (i.e. roots strictly lower than one in absolute
value) is larger than the number of predetermined variables. In our model this means that, for a given
initial condition m

t~1
close to the steady state, there exists an in"nite number of asset accumulation

(trade balance) paths converging to the same balanced trade steady state.

19Notice that we exclusively consider codimension one bifurcations by varying only one parameter.

20 In general, when one root is crossing the value 1 di!erent types of local bifurcations (transcriti-
cal; generic saddle-node or pitchfork) occur, depending on the properties and number of stationary
states (see Grandmont (1988), (Section C)). Since we have assumed that the steady state persists
(Proposition 1 holds) for all parameter values under consideration, saddle-node bifurcations are
ruled out. Moreover, from Proposition 2 it follows that there exists at most two steady states which
implies that pitchfork bifurcations cannot occur either.

21 Indeed, other conditions must also be satis"ed for the occurrence of bifurcations (see, for
instance, the bifurcation theorems stated in Grandmont (1988) or Hale and Koc7 ak (1991)). However,
these other conditions are generically satis"ed.

22A Hopf (#ip) bifurcation is supercritical if the invariant closed curve (cycle of period two) is
stable, and therefore indeterminate, while the steady state nearby is determinate.

23Notice that, if we had not taken into account the nonlinearities of the model, we would had not
been able to detect the existence of endogenous #uctuations (deterministic and stochastic) whenever
the steady state under analysis is locally determinate.

that we have only one predetermined variable (money).18 The three lines de"ned
above are also important to identify the occurrence of bifurcations through
which deterministic endogenous #uctuations may emerge. A bifurcation occurs
when, by continuously changing the value of one parameter19 of a nonlinear
dynamic model (the bifurcation parameter), there is a qualitative change in the
dynamic properties of a steady state. Therefore, if by slightly changing the
bifurcation parameter, a pair of conjugate complex eigenvalues crosses the unit
circle, the values of ¹ and D cross the BC line in its interior. Then a steady state
which was a sink becomes a source or vice versa. In this case a Hopf bifurcation
occurs (deterministic equilibrium trajectory lying on an invariant closed curve
nearby a steady state). On the other hand, if the values of ¹ and D cross the AB
line, an eigenvalue is crossing the value !1, and a -ip bifurcation occurs
(deterministic cycle of period two nearby a steady state). Finally, if the values of
¹ and D cross the AC line, an eigenvalue is crossing the value 1, and a transcriti-
cal20 bifurcation occurs (two steady states exchanging stability properties).21
Furthermore, as shown in Grandmont et al. (1998), we are also able to study the
emergence of stochastic equilibria nearby local bifurcations. In fact, if the Hopf
(#ip) bifurcation is supercritical22 then, there are in"nitely many stochastic equi-
libria containing in their interior the invariant closed curve (the cycle of period
two). Similarly, in the case of a transcritical bifurcation if the steady state
considered in our local analysis is the saddle one (determinate) while the other is
a sink (indeterminate), then there are no stochastic #uctuations arbitrarily near it,
but there are in"nitely many stochastic equilibria nearby the other steady state.23
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24Hence a, p and e4 are all evaluated at the steady state de"ned in Proposition 1.

Since the trace and determinant depend also on other parameters besides the
one chosen as bifurcation parameter, the local dynamics of the model is also
determined by the values taken by the other parameters. That explains why we
should also study how the relationship D moves when we change the other
parameters of the model (step (iv)).

4.2. Implementation

Following the four steps highlighted in the previous section, we begin by
deriving the Jacobian matrix, evaluated at a steady-state solution24 for the
dynamic system (20). Using the relationships de"ned in Eqs. (25)}(29), the
matrix J is given by

J"C
a aA1!

1

pB
p
aA

1

rA1#
1

e4B!1B
1

aA
1

rA1#
1

e4B(p(1!a)#a)!(1!a)(p!1)BD (35)

where r51 is the degree of returns to scale; 0(a(1 is the propensity to
consume nontraded goods; p'0 is the elasticity of substitution in consumption
between traded and nontraded goods and e4'0 is the elasticity of labour
supply. The expressions for the determinant and trace of the Jacobian matrix
(35) can be written as follows:

D"

1

r A
1

e4B#D
1

where 0(D
1
"

1

r
(1, (36)

¹"

1

e4C
p(1!a)#a

ar D#¹
1

(37)

where ¹
1
"a#

1

ar
[1#(r!1)(1!a)(1!p)].

Consider "xed values for a, p and r, and choose e43(0, #R) as the bifurcation
parameter. Then, from Eqs. (36) and (37), the locus (¹(e4), D(e4)) is de"ned
through the following relationship:

D " D(¹)"(¹!¹
1
)C

a
p(1!a)#aD#D

1
for ¹'¹

1
.
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25 e4
F
(e4
T
) is the value of the parameter e4 such that the half-line D crosses the AB (AC) line. The

corresponding analytical expressions are speci"ed at the end of Proposition 5.

Fig. 1. The half-line D in the (¹, D) plane.

The expression D is linear and is always positively sloped, i.e.:

D@"
LD/Le4
L¹/Le4

"

a
p(1!a)#a

'0 where 0(D@(1. (38)

In graphical terms, the locus (¹(e4), D(e4)) with e43(0, #R) is a half-line D begin-
ning, for e4"#R, in (¹

1
, D

1
) and pointing upwards. An example is given in

Fig. 1.
Before proceeding further, note that in our model Hopf bifurcations are

always ruled out. The half-line D always crosses the point P"(a#1/a, 1) and,
since a#1/a'2, it cannot cross BC in its interior (see Fig. 1). However, #ip
and transcritical bifurcations may occur, namely when e4 crosses either the value
e4
F

or the value e4
T
.25

Having established the relationship D linking ¹(e4) and D(e4), we can now
proceed to studying how local dynamics and bifurcations are a!ected by
movements in the other parameter values of the model. In the following
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26The expression for a
F

and for a
T
, de"ned below in the text, is given at the end of Proposition 5.

subsection we focus in particular on the role played by the degree of openness
(measured by a and p).

4.3. The role of openness

To analyse how the half-line D moves in the space (¹, D) as a changes in (0,1),
we simply need to understand how D@ and (¹

1
, D

1
) are a!ected by a.

From Eq. (38) the slope of the half-line D is always increasing in a, moving
from 0 to 1 as a increases from 0 to 1. As regard to the initial point (¹

1
, D

1
), this

always lies } given a "xed value of r'1 } on the same horizontal line (between
BC and the axis ¹, e.g. the dotted line in Fig. 2), since D

1
"1/r does not depend

on a. ¹
1
, on the other hand, depends on a, ¹

1
(a); decreasing for

a(a
a
"[(r!p(r!1))/r]1@2 and increasing for a'a

a
. Note that, in the limiting

case of a closed economy (a"1), the half-line D lies on the AC line. In fact,
D@ (a"1)"1 and ¹

1
(a"1)"1#D

1
.

Note further that a
a
40 when p5r/(r!1), in which case ¹

1
is always

increasing in a'0. See top diagram in Fig. 2. Here, the initial point (¹
1
, D

1
)

moves on the horizontal line D"D
1
, with ¹

1
going from !R (for a close to 0,

hence D@ close to 0) until it reaches the AC line (for a close to 1, hence D@ close to
1), crossing the AB line for a"a

F
.26 Take for instance the half-line D

1
, the case

of a(a
F

(which is also reproduced in Fig. 1). Here, the steady state is a saddle
for e4

F
(e4(#J. A #ip bifurcation occurs when e4 crosses the value e4

F
and

the steady state becomes a sink for e4
T
(e4(e4

F
. Then as e4 crosses the value

e4
T

a transcritical bifurcation occurs and the steady state becomes again a saddle
for e4(e4

T
.

We turn now to the case of p(r/(r!1), depicted in the bottom diagram of
Fig. 2. In this case ¹

1
is always positive but nonmonotonic in a. For 0(a(a

a
,

the initial point moves to the left on the horizontal line, D"D
1
. Indeed ¹

1
goes

from #R (for a close to 0, hence D@ close to 0), crosses the AC line for a"a
T

until it reaches its minimum value for a"a
a

(where 0(D@(1). Then, as
a increases from a

a
to 1, the half-line D becomes steeper while ¹

1
moves to the

right until it hits the line AC. By direct inspection of the bottom diagram in
Fig. 2, it is clear that #ip bifurcations are ruled out, while transcritical bifurca-
tions only occur for a'a

T
. Finally, for a(a

T
the steady state is always

a saddle.
The following proposition summarises the results on local stability and

bifurcation analysis.

Proposition 5. ¸et r be the degree of increasing returns; a, p and e4 be, respectively,
the propensity to consume nontraded goods, the elasticity of substitution in
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Fig. 2. Shifts in half-line D with changes in a3(0, 1).
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27 It is worth noticing that when e4 takes the value eT
4

the function Z(N) (see Eq. (31)), evaluated
at the steady state (de"ned in Proposition 1), takes the value zero (i.e. Z(1)"0). This means
that when e4 " e4

T
only one steady state exists, but for e4 close enough to e4

T
two steady states

coexist.

consumption between traded and nontraded goods and the elasticity of labour
supply, all evaluated at the steady state referred in Proposition 1. ¹hen the
following generically holds.

(I) if p5r/(r!1) then:
(i) for a(a

F
, the steady state is a saddle when 0(e4(e4

T
; undergoes

a transcritical bifurcation for e4"e4
T

becoming a sink for e4
T
(e4(e4

F
;

undergoes a -ip bifurcation for e4"e4
F

becoming a saddle for e4'e4
F
.

(ii) for a'a
F
, the steady state is a saddle when 0(e4(e4

T
; undergoes

a transcritical bifurcation for e4"e4
T

becoming a sink for e4'e4
T
.

(II) if p(r(r!1) then
(i) for a(a

T
, steady state is always a saddle.

(ii) for a'a
T
, the steady state is a saddle when 0(e4(e4

T
; undergoes

a transcritical bifurcation for e4"e4
T

becoming a sink for e4'e4
T
.

where27 e4
T
"1/(b

1
!1); e4

F
"1/(b

2
!1), with b

1
,r[(p!(1!a))/p] and

b
2
,r[1!(1#a)/(p(1!a)#2a], a

T
"(r!(r!1)p/r; a

F
M!A#[A2!

4r(1!(r!1)(p!1))]1@2N/2r, with A,(1#r)#(r!1)(p!1).

Proposition 5 states that endogenous #uctuations (deterministic and stochas-
tic) emerge within our model. In the case in which a #ip bifurcation occurs local
deterministic #uctuations emerge, namely cycles of period two nearby the steady
state. In the simulations we have made this bifurcation was supercritical, i.e.
a cycle of period two appeared when the steady state was a saddle (for values of
e4 close but higher than e4

F
). As explained before, this means that the cycle is

indeterminate and there are lots of stochastic endogenous #uctuations around
it. Moreover, when the steady state is a sink (indeterminate) there are also
in"nitely many stochastic endogenous #uctuations arbitrarily near the steady
state. In the case of a transcritical bifurcation in which two steady states coexists
(when e4 is close enough to e4

T
), one being a saddle and the other a sink

(indeterminate), there are again lots of stochastic endogenous #uctuations arbit-
rarily near the sink. Hence, even when the steady state under consideration is
a saddle (determinate), endogenous #uctuations emerge if e4 is close enough to
the &sink boundaries' (e4

T
and e4

F
).

The above "ndings on local stability, bifurcations and on the emergence of
endogenous #uctuations are depicted in Fig. 3, which plots e4

T
and e4

F
as func-

tions of a. This picture represents: (i) the locus of points (a, e4) such that a steady
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28See Lloyd-Braga (1995a) where the closed economy case is considered. There, it is shown that
even under increasing returns to scale #ip bifurcations cannot occur for e4'0. Indeed, in the limit
case of a closed economy the equilibrium system degenerate into a one-dimensional dynamic system
with no predetermined variables (no trade balance in a closed economy): the eigenvalue crossing the
value 1 for e4 crossing e4

T
"1/(r!1).

29 Indeed empirical studies seem to reject a high value for the elasticity of labour supply.

30From Eq. (39) we can see that, when p5r/(r!1), e4
F

increases as r decreases whereas it
decreases as a decreases (high openness).

state is a sink (shaded areas) or a saddle; (ii) for each given value of a, the values
of e4 such that bifurcations occur (lines in bold).

It is instructive to analyse "rst the limiting case of closed economy (a"1).
Recall that under this assumption the half-line D lies on the AC line and no #ip
bifurcation can occur.28 However, as can be seen in Fig. 3, the steady state is
indeterminate for e4'1/(r!1)"e4

T
(a"1) and local stochastic endogenous

#uctuations can arise; whereas, a transcritical bifurcation occurs when e4 crosses
the value e4

T
(a"1).

From the top diagram in Fig. 3 we can see that a minimum degree of
openness, namely a(a

F
(and p5r/(r!1)), is required for #ip bifurcations to

occur. Moreover, a high degree of openness (i.e. low a) facilitates
the occurrence of #ip bifurcations since the value of e4 needed for the occurrence
of a #ip bifurcation is lower.29 On the contrary, from both diagrams in Fig. 3, it
can be seen that high values of a help indeterminacy of the steady state and the
emergence of local stochastic endogenous #uctuations. Indeed, the range of
values for e4 such that indeterminacy can arise widens up as a increases.

As for the role of p, in all cases analysed a high elasticity of substitu-
tion in consumption between traded and nontraded goods helps the emerg-
ence of endogenous #uctuations. In fact: (i) e4

T
and e4

F
are decreasing in p; (ii)

a
T

decreases as p increases; (iii) #ip bifurcations only occur for su$ciently high
value of p.

Finally, we notice that increasing returns are necessary for the emergence
of local (deterministic or stochastic) endogenous #uctuations. If r"1 the
horizontal asymptote (1/r!1) will go to in"nite and the steady state will
always be a saddle. However, it can be shown30 that high openness requires low
degree of increasing returns for #ip bifurcations to occur at a given "xed value
of e4.

5. Discussion

The previous section has considered the mathematical analysis of the dynam-
ics of the economic system. In this section, we aim to discuss its economic
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Fig. 3. Local dynamics and bifurcations in the space (a, e4).
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31Recall that in a closed economy c
t`1

"M/p
t`1

.

signi"cance. As shown in Section 4.3 the existence of increasing returns is
necessary for the emergence of local endogenous #uctuations, either determinis-
tic or stochastic; whereas the occurrence of #ip bifurcations and the emergence
of deterministic cycles is only possible for an open economy.

To give a clear intuition of these results it is useful to analyse "rst the
benchmark case of a closed economy with constant returns. In this case a posit-
ively sloped labour supply curve (current leisure and future consumption are
gross substitute) implies an upward sloping o!er curve in the space of current
work and future consumption. Suppose that the economy is at its steady-state
solution for sometime and that, for some reason, the expected future price
increases. The labour supply curve will then shift to the left (due to the gross
substitution assumption) and, since real wages are constant under CRS, employ-
ment will decrease. Under perfect foresight, the increase in future prices will also
decrease future consumption31 and therefore will also decrease employment in
the next period (needed for its production). To get local endogenous #uctuations
the equilibrium dynamic system should be able to produce nonmonotonic
trajectories, which is ruled out with constant returns.

If there are increasing returns and at the steady state the labour supply is
more elastic than the labour demand curve (e4'e$"1/r!1), then the expected
future increase in prices will call for an increase in employment (together with an
increase in real wages). Meanwhile, due to the increase in future prices, future
consumption decreases together with employment in the next period. Thus this
economy seems to be able to produce equilibrium trajectories for labour that are
nonmonotonic (i.e. local endogenous #uctuations nearby the steady state).
However, the latter cannot be deterministic (perfect foresight) equilibrium tra-
jectories. The initial increase in employment is not compatible with the decision
of lowering future consumption for a rational consumer acting under perfect
foresight, since the o!er curve is positively sloped. Nevertheless, as shown in our
analysis, local endogenous #uctuations can be of stochastic nature.

Turning to the open economy case, we show that the system can produce
deterministic endogenous #uctuations (cycles of period two) as well as stochastic
endogenous #uctuations. In an open economy, in fact, a simultaneous decrease
in future consumption (of the nontraded good) and an increase in current
employment (and real wage income), following an increase in the expected future
price of the nontraded good (p

t`1
), becomes compatible with the perfect

foresight hypothesis. This is obtained in our model because the o!er curve, in the
space (N

t
, c

t`1
), is parametrized in the consumption of the traded good (x

t`1
),

and will shift to the right when x
t`1

increases. In our economy the increase in
x
t`1

, following the increase in p
t`1

, is higher the higher is the substitution e!ect
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(i.e. high p) and the higher is the income e!ect (i.e. low a). That explains why the
more open is the economy the higher the possibilities for the occurrence of #ip
bifurcations and for the emergence of local deterministic #uctuations.

It is important to emphasise that whenever the system displays nonmono-
tonic equilibrium trajectories of the type described above, the balance of trade of
our economy is persistently #uctuating (switching from a position of net ex-
porter to net importer and vice versa).

Lastly, what is the empirical plausibility of our model? Clearly, it is di$cult to
relate such a stylised model to the real economy. Our aim has not been to
develop a model which can then be directly calibrated and used to understand
an actual economy: we have left many important features out of the model that
are clearly important in the real world. The value of a can take a wide range of
values in di!erent economies, depending on their degree of openness. The
estimates of p vary from 0.44 (Tesar, 1993) to as high as 1.28 for some countries
(Mendoza, 1995). There are a variety of estimates for r, which we might expect to
be above 1 but not by much (see e.g. Caballero and Lyons, 1990). However, our
model does show that the combination of increasing returns and the openness of
the economy makes deterministic endogenous #uctuations possible and, in
general, makes the taste and preference parameters' requirement for such #uctu-
ations to arise less restrictive. If we introduced other realistic features such as
capital accumulation, then the scope for endogenous #uctuations would be
increased: in general, the intertemporal relationships would be more complic-
ated, allowing for more nonmonotonicity and a wider range of parameters
to vary.

6. Conclusion

In this paper we develop a standard overlapping generation model of a small
open economy with a traded and a nontraded good, where labour is the only
factor of production and money the only asset. The nontraded good sector is
characterised by Cournotian-monopolistic competition with free entry and
increasing returns to scale at the "rm level, whereas output in the traded good
sector is exogenous. In this setting the dynamic equilibrium is described by
a two-dimensional system with one predetermined variable (money), which we
analyse for the emergence of local deterministic and stochastic endogenous
#uctuations.

The paper demonstrates the possibility of deterministic (and stochastic) endo-
genous #uctuations in an open economy with increasing returns to scale. Under
constant returns and positive labour supply elasticity, the system is always at
a saddle point stable equilibrium. Hence, as in closed economies (see e.g.
Lloyd-Braga (1995a), Cazzavillan et al. (1998)), increasing returns (either inter-
nal or external) is one crucial element leading to the emergence of endogenous
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32Allowing for imperfect competition in both output and labour markets may reduce the role of
increasing returns. As shown by Jacobsen (1997), endogenous #uctuations still arise with a positively
sloped labour supply schedule and constant returns to labour technology.

#uctuations.32 The new feature of the paper has been to introduce openness into
the economy: contrary to the equivalent closed economy set up, households can
substitute consumption between traded and nontraded goods, and deterministic
cycles can emerge.

Clearly, the simplicity of the underlying economic model used does not permit
us to make any speci"c observations about the functioning of real economies.
However, we have demonstrated that there is a potential solution to the
problem of the excess variability in the current account to which other ap-
proaches have given rise. An economy in which all of the fundamentals are
unchanged can still exhibit persistent volatility in its current account. This is
perhaps the clearest conclusion to be drawn from our paper.
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