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Abstract. This paper explores the implication of evolutionary models (replicator dynamics) in a
simple Cournot duopoly model. A firm type is a linear decision rule in which the firm’s output
depends on the other firm’s previous output. First we run an Axelrod Tournament between firm
types. The champion firm is a near profit-maximizer. Secondly, we allow social evolution to occur
using replicator dynamics. Here we find that there are very strong forces leading towards a collusive
or near collusive outcome, so long as there is not too much ‘noise’ in the dynamics.
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It has long been argued that firms use rules of thumb for solving problems and
making decisions,1 and also that firm’s rules of thumb might evolve over time
in a Darvinian manner.2 More recently game-theorists have made the connection
between conventions, bounded rationality, learning and evolutionary models,3 and
the idea has been popularized in the social sciences by Axelrod (1984). The central
notion is very simple. Firms follow ‘strategies’, or rules which tell them what to
do: different agents try out different strategies. Some strategies are more successful
than others. Over time, successful strategies will become more common, either
through a form of propagation, or imitation.4 Hence strategies that lead to firms
being more profitable will tend to predominate over time. We can then explain the
strategies of firms as being the result of such a process of social evolution. The
question which this paper seeks to address is what behavior will result form this
process: competition or collusion?

This paper seeks to explore the evolutionary approach to explain the behavior of
firms (decision rules) in the simplest possible Cournot environment using a simula-
tion methodology. The Cournot model is one of the canonical models of oligopoly,
and the most widely used in economics. It is important for us to know what the
implications of the evolutionary approach are for this model. Furthermore, we can
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employ the simulation based evolutionary approach within the context of a well-
known model with practical applications. The use of the evolutionary approach in
game theory is often restricted to abstract and simple games which have no direct
or obvious connection with the models used in standard economic theory. Most
research has been done on the prisoner’s dilemma: whilst this is a common model,
it is also very special in that it possesses a strictly dominant strategy.5 6

What types of behavior would we expect to find duopolists following in a
Cournot environment? If we restrict firms’ decision rules to the simplest case of
constant outputs, then the Nash equilibrium will be selected under a wide range of
modeling assumptions.7 However, we consider the case of linear decision rules,
where multiple Nash-equilibria exist. Hence the question is not whether a unique
Nash equilibrium will be selected, but rather which equilibria out of a large number
of Nash equilibria will be tend to be selected by the evolutionary dynamics? As
such, the paper has more in common with evolutionary models of coordination
games (Vega-Redondo (1993), Oechssler (1997, 1999)).

The conclusions of the paper are really quite sample and quite far reaching. Our
first main conclusion relates to the type of firm which does best in the ‘Tourna-
ment’, where there are many different types of firms, some quite unconventional.
In the Tournament, each strategy is played against all strategies. We find that the
‘Champion’ firm in this context which earns the highest profit after playing all
strategies is a ‘near profit maximizer’:8 indeed, the standard Cournot best-response
function does very well. Near profit maximizing behavior is a robust decision rule
in an environment where a firm might meet a wide variety of firm types. The intu-
ition here is that if you can only choose one decision rule with which to play all
possible strategies, then a strategy that ensures that you always play a near best
response output to your opponent’s output will do well overall. Of course, when
playing a specific decision rule, this is not so: for example, if you are playing
a standard best-response Cournot reaction function, then your best strategy is a
decision rule that gives you the Stackelburg leader’s output, which is not a best
response to the follower’s output. However, this result indicates that there is no
single rule which strategically exploits all other decision rules: the best it appears
you can do is to near-profit maximize.

Our second main conclusion concerns the evolution of cooperative behavior.
If we allow a process of evolution to take its course, decision rules that yield
low profits are weeded out. When this happens, we find a very strong tendency
towards the collusive outcome: indeed with no noise in the replicator dynamics,
joint profit maximization is a very common outcome (although not universal).
There are strong evolutionary forces driving behavior towards cooperation. The
intuition follows from the fact that the collusive decision rule is one that imitates
its competitor: when it meets itself it maximizes joint-profits.9 In an economy with
diverse decision rules, the collusive decision rule will do badly overall (since it
copies poor decision rules). As evolution drives out poor decision rules, however,
the imitative nature of the collusive decision rule means that it must do at least as
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well as its competitor and when it meets itself it earns the highest joint profit. Hence
if enough collusive firm types prevail in an economy, they will tend to take over the
population. Collusion pays, and in an evolutionary environment this means it can
posper. Unlike the standard Prisoners dilemma, collusion is robust against invasion
here: the imitative behavior of the collusive decision rule means that it will do as
well against the invading strategy as the invader does against itself.10

This result can be set in the context of other papers. Where we have multiple
Pareto ranked Nash equilibria, we can expect the Pareto dominant equilibrium to
be selected more frequently, in the sense of it having a larger basin of attraction
in some sense (although Pareto-inefficient equilibria cannot be ruled out). Experi-
mental evidence certainly supports the ability of subjects to coordinate on payoff
dominant outcomes much of the time: see for example Bacharach and Bernasconi
(1997), Mehta et al. (1994a, b).11

However, as the replicator dynamics become noisier, we find that the evolu-
tionary simulations move away from the collusive and towards the near profit
maximizing behavior that performed best in the tournament. Evolution towards
collusion requires that the population is able to evolve towards more cooperative
decision rules. However, with more noise in the evolutionary process, there remains
a diversity in decision rules which limits the extent to which it is possible for
cooperative types to predominate.

In Section 2, we outline the basic Cournot duopoly model used’ in Section 2
we describe the method employed to generate the decision rules and the resultant
Tournament. In Section 3 we outline the evolutionary dynamics both with and
without and present the simulation results.

1. The Cournot Model

There are no costs, and the market price P is a linear function of the two outputs
xi with a unit slope and intercept:

P = max[0, 1 − x1 − x2] (1)

The firms’ profits are given by the payoff function Ui : A → [0, 1/2]:
Ui(x) = x1 · (1 − xi − xj ) (2)

and where A ≡ {x ∈ [0, 1]2 : 1 − xi − xj ≥ 0}, the unit triangle.
Firms play the duopoly game using a decision rule for choosing output. De-

cision rules are linear, and give the output of firm i in period t as a function of
the output of the other firm j in the previous period. A Firm type is defined by a
decision rule, and can be represented as a pair of parameters {h0i, h1i} ∈ R

2, the
intercept ho and slope h1. We consider various standard decision rules in Table I.

The Myopic Cournot Profit Maximizer (MCPM) is the standard best-response
function. The Stackelburg Sticker (SS) produces the Stackelburg Leader output 1/2
every period.12 The Cournot Sticker (CS) produces the Cournot-Nash output 1/3
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Table I. Some standard decision rules.

Firm type Intercept Slope

Myopic Cournot profit maximizer 1/2 –1/2

Walrasian Duopolist 1 –1

Stackelburg sticker 1/2 0

Cournot sticker 1/3 0

Joint profit maximizer/copy cat 0 1

every period. The ‘Copy cat’ is the analog of Axelrod’s Tit-for-Tat strategy in his
treatment of the prisoner’s dilemma: firm i produces the other firm’s output in the
previous period. We call this the Joint Profit Maximizer since it supports the joint
profit maximum.13

2. The Method

Our method consists of three stages. First we generate a set of firm types. Second,
given the set of firm types, we then run an Axelrod Tournament, by which we
mean that every firm type plays every other firm type. Thirdly, we then run an
evolutionary algorithm based on replicator dynamics. Let us now consider in detail
these three steps in turn.

The way we have chosen to generate firm types is based on a result found in
Hey and Martina (1988) and Klemperer and Meyer (1998).14 If we take any point
in the interior of the unit triangle A, we can generate a reaction function by taking
the tangent to firm 1’s isoprofit curve at that point. Let us consider some point
x ′ ∈ intA, at x′ the payoff of firm 1 is x1(−x1 − x2). It is easily verified that the
tangent to the isoprofit curve at x′ is the ratio of the marginal profits ∂U1/∂xi at x ′
and is characterized by the slope and intercept terms:

h0 = 2x1 + 2x2 − 1 (intercept) (3a)

h1 = (1 − 2x1 − x2)/x1 (slope). (3b)

Note that if firm 2 chose the decision rule thus generated, then the best profit that
firm 1 could achieve is by choosing a decision rule passing through x′ : x ′ solves
the problem maxU1(x) subject to x2 = h0 + h1x1, where h0 and h1 are as in
(3). A Nash-equilibrium in decision rules occurs at x ′ when firm 1 chooses as
its reaction function the tangent to firm 2’s isoprofit curve at x′, and vice-versa.
Such an equilibrium can be constructed to support any point in the interior of the
unit triangle (Klemperer and Meyer, 1988). Our method of generating firm types
provides a simple visual and graphical way to represent a firm: we can reverse the
algorithm and represent the two-dimensional parameterization of firm 1 {h0i, h1i}



AXELROD MEETS COURNOT: OLIGOPOLY AND THE EVOLUTIONARY METAPHOR 143

by the point in the unit triangle which generated it (the mapping represented by
(3a, b) is 1-1).15

The algorithm for generating the firm types is implemented using a grid search
on the unit triangle A. We specify the granularity of the grid, the distance between
two adjacent points, and generate firm types from points in the interior of the unit
triangle. The set of decision rules that are best responses to themselves are to be
found on the 45◦line (x1 = x2). The decision rule generated by a point a ∈ A is
the best response to the rule generated by the point a’ which is the reflection of
point a in the 45◦line. Thus, insofar as the algorithm generates a set of points that
are symmetric about the 45◦line, each decision rule generated is a best response to
another decision rule in the set, and no decision rule (however strange) is strictly
dominated.

Given the set of firm types, we then calculate payoff matrix by running an
Axelrod Tournament:16 each firm type meets each other firm type (including itself)
to play the constituent duopoly game. In the constituent duopoly game the pair of
decision rules {i, j} defines the dynamic system:

x t = h + H · xt−1

where h = [h0i, h0j ], and H =
[

0 h1i

h1j 0

]
. We have tried both simulation and

analysis to evaluate the firms’ profitability in the constituent game. We chose the
analytical method: using the eigenvalues of H to classifty the dynamic properties
of the system, and simulating only where unavoidable and sensible (for about 5%
of constituent games).17 Where the system was stable, we used the ‘stationary’
per-period payoff to measure profit;18 where the system was unstable, we took an
analogous measure. The exact algorithm used is described in the appendix.

Having run the full Axelrod Tournament with n types of firm, we then have the
n×n payoff matrix T = [uij ] : uij being the payoff of type i when it meets type j .
The Average Tournament Profit for firm i (ATPi) is the arithmetic average of firm
i’s payoffs summed over j = 1 . . . n :

ATPi ≡ (1/n) ·

 ∑

j=1...n

uij


 . (4)

The Tournament ATP is the arithmetic average of the ATPi. A useful statistic for
evaluating the profits of the various firm types is to compare it to the largest possible
profits that could be earned if a ‘Superfirm’ was able to choose its decision rule
optimally for each individual firm it meets. Since we generate type i from the
tangent to firm 1’s iso-profit curve at xi , it follows that if firm 1 were faced with
this decision rule, its highest profits will be its profits at xi , so that superfirm profits
are: (

1

n

) n∑
i=1

x1i (1 − x1i − x2i) .
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Figure 1. Payoffs in the large Axelrod tournament.

The ratio of actual so superfirm profits represents the cost to the firm type of not
having the flexibility to tailor its decision rule to each different opponent type, and
is hence an indicator of the cost of Bounded Rationality, or the dual notion of the
value of flexibility.

We report the largest Tournament we have run: the grid search had granularity
0.005, generating a total of 19,702 firm types. All our computations were in douible
digit precision, although we only report values to 4 s.f. unless stated otherwise.
We also report a smaller Tournament which we use in the next section for the
evolutionary algorithm: here the granularity was 0.02, generating 1,176 firm types.

In Figure 1, we have a contour map for the large Tournament: each point on
the map represents a firm type, and the height of the contour it is on represents its
Average Tournament Profit (ATP). The ‘champion’ of the Tournament which earns
the highest ATP is in fact located at the point (0.435, 0.310). This corresponds to
the decision rule with slope −0.414 and intercept 0.49. The ATP of the Champ is
0.07466, (which represents 88% of superfirm profits, and almost twice the average
ATP). In Tables IIa, b we present the performance of the Champ’s in the two Tour-
naments in comparison to the firms in Table I (or the closest firms to them in the
grid, marked with an ∗).

Superfirm profits and the average ATP are a little higher in the smaller Tourna-
ment. This is due to the fact that we have excluded the edges from both grids,
so that the larger Tournament includes firms closer to the edge (which tend to
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Table IIa. The large Axelrod tournament.

X1 X2 Intercept Slope ATP (4 s.f.)

Champion 0.435 0.310 0.49 –0.414 0.07466

MCPM 0.5 0.25 0.5 –0.5 0.07342

JPM 0.25 0.25 0 1.0 0.03588

Walrasian duopolist∗ 0.5 0.495 0.99 –0.99 0.005066

Cournot sticker∗ 0.335 0.335 0.34 –0.0149 0.06164

Stackelburg sticker 0.25 0.50 0.50 0 0.05203

Granularity 0.005; 19,702 firm types; superfirm profits 0.08375 (4 s.f.). Average
ATP 0.3775.

earn low profits). The most striking feature of Tables II is to note that the MCPM
does so well, being quite ‘close’ to the Champs in terms both of payoff and the
intercept/slope coefficients (the profits of the MCPM are over 98% of the Champs).
The other reference firms from Table I do badly: the JPM rule is even below the
average ATP.

The fact that the MCPM does so well may seem at first sight something of a
puzzle. However, the season why the Champ and the MCPM are so close is that
the Champs ‘near profit-maximizing’ behavior is very robust. In the population,
there is a great diversity of firm types: the Champ has to perform well across
the board, no matter who it meets. Near profit maximizing behavior ensures at
least that its output in each of the constituent games is almost a best response to
the output of the other firm. Whilst other firm types might do very well against
specific other types, they do not do well on average against all types. For example,
the copy-cat behavior of JPM is not very good in this environment, since it can
only prosper with rules that do well against themselves. Thus when JPM meets the
Stackelburg Sticker, both firms produce output of 0.5 and earn nothing; MCPM
produces 0.25 and may earn less than the Stackelburg Sticker, but more than JPMs
nothing. The Stackelburg Sticker is designed to optimize against only one other
strategy: MCPM. When it plays itself or JPM, it earns zero. MCPM is more robust:
when it meets another strategy, it is able to earn strictly positive profits so long as
the other firm produces less than 1 unit of output in equilibrium. It is the ability to
do reasonably well against all decision rules which means that it does so well in
the Tournament. We would therefore conclude that in an environment with a wide
variety of firms, near profit maximization (as represented by the Champ) is a very
robust decision rule for the Cournot duopolist.

3. Evolution in the Duopoly Model

There has been much discussion of the evolutionary metaphor in economics in re-
cent years.19 In biology, successful species or genes tend to become more common
because they give rise to more progeny. In the context of social evolution, mech-
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Table IIb. The tournament used for the evolutionary dynamics.

X1 X2 Intercept Slope ATP (4 s.f.)

Champion 0.44 0.30 0.48 –0.409 0.07516

MCPM∗ 0.5 0.26 0.52 –0.520 0.07415

JPM∗ 0.26 0.26 0.04 0.846 0.04064

Walrasian duopolist∗ 0.5 0.48 0.96 –0.980 0.01796

Cournot sticker∗ 0.34 0.34 0.36 –0.059 0.06428

Stackelberg sticker∗ 0.26 0.50 0.52 –0.077 0.05594

Granularity 0.02; 1,176 firm types; superfirm profits 0.08500. Average ATP
0.03905.

Table III. NSS and ESS firm types.

Type 0.26 0.28 0.3 0.32 0.34∗ 0.36 0.38

Uii 0.1248 0.1232 0.12 0.1152 0.1088 0.1008 0.0912

ESS firm type marked with ∗.

anisms of propagation might also be present: successful firms grow and diversify,
their managers circulate, good firms take-over bad, unsuccessful firms go bust.
However, in social evolution there is also the mechanism of imitation:20 firms tend
to imitate the more successful practices of other firms, as in ‘benchmarking’. There
is also learning: firms will receive signals from the capital market and elsewhere
about how they are performing relative to other firms: this will lead less successful
firm types to adapt their behavior. The actual processes involved are very complex,
and we make no attempt to develop new theoretical results here. We do seek to
explore the implications of an existing model of social evolution in a new context.

Having run the Tournament, we proceeded to apply an evolutionary algorithm.
The vector Z gives the proportions Zi of each firm type i (Zi ∈ [0, 1] and �Zi =
1). We start from an initial condition Z0 and then represent evolution using the
replicator dynamics.

On a purely theoretical level, we can identify which strategies are Evolutionary
Stable (ESS) and which Neutral stable (NSS).21 Given the payoff matrix T , it is
easy to calculate these types.22 A strategy i is NSS iff: uii ≥ uki for all k = 1 . . . n,
and if there exists some k �= i s.t. uki = uii , then ukk ≤ uik . A strategy i is ESS iff it
is NSS and the second inequality is stict. In Table III, we list the 7 NSS strategies,
one of which (the near Cournot Sticker) is ESS and is marked with an asterisk.
In the top row, the firm type is identified by one ordinate (since all NSS are on
45◦line), and the bottom row gives the payoff.

The set of all 7 NSS strategies itself is not an Evolutionary Stable (ES) set as
defined by Thomas (1985).23 The set of NSS types is Pareto-ranked: the payoffs
descend from left to right, with the JPM (type 0.26) the Pareto dominant NSS
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strategy. Note that there are not more NSS strategies: decision rules generated for
outputs below 0.26 (0.24 to 0.02) have positive slopes in excess of 1 and are unsta-
ble against themselves. Those generated by outputs above 0.4 are too competitive:
although they are stable against themselves, they can be beaten by firms with large
slopes which generate a cycle and over the cycle earn higher profits.

In this paper, we have modeled the evolutionary mechanism using the discrete
time replicator dynamics: we chose this merely as a representative of the class of
payoff monotone dynamics whose properties are well known. The basic replicator
dynamics used were (following van Damme (1987) and Gale et al. (1995)):

Zis = Zis−1(1 − d)+ Zis−1
[
(Uis−1 − us−1

] + (d/n) (5)

where d ∈ [0, 1) is a ‘noise’ parameter, Uis is the average payoff of firm i in
iteration s (Uis = �j=1...nZjs · uij ), and us is the average payoff of all firms in
iteration s (us = �j=1...nZjs · Uis). For computational reasons, we allowed for
extinction when Zi became very small.24

Without noise, the change in proportions depends on the absolute difference
in profits from the population average. This is a plausible specification from our
perspective: better (worse) rules become more (less) common; the fact that the
extent to which they change depends on their current proportion captures the notion
that firm types with larger population proportions are more ‘visible’ and likely to be
imitated (if good), or avoided (if bad).25 Assuming that there exists an attractor(s)
the replicator dynamics converge to a situation where all surviving firms have equal
average profits: Z∗ is such that Ui = Uj for all i, j = 1 . . . n when Zi,j > 0. We
can interpret firm types as ‘pure strategies’ in a game: if the replicator dyanmics
converge, then Z∗ is a Nash-equilibrium given the set of strategies that were present
with non-zero proportions in the initial vector Zo.26

With noise d > 0, each firm type i loses d · Zi , and these firms are randomly
allocated across all firm types, each firm type gaining d/n. this sort of ‘noise’ can
be interpreted as random ‘mutation’ (as in Linster (1994, pp. 348–353 and Gale et
al. (1995)).

The fact that a strategy is ESS or NSS is neither necessary nor sufficient for it to
be an attractor of the replicator (or other) dynamics. However, it does give us some
idea what to expect from the simulations: the key question is which amongst these
NSS strategies will the replicator dynamics select?

3.1. RESULTS: DIFFERENT NOISE LEVELS

First, we describe the evolutionary simulations we have run for different values of
the noise parameter d from the initial vector Zio = 1/n, which are summarized
in Table IV. We discuss simulations with different initial positions in Table V. The
second column of Table IV gives the mean firm at the end of the simulation, thus
we weight the location of each firm type by its proportion: �i=1...nZi ·xi . The third
column gives the modal firm at the end of the simulation. The next four columns
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Table IV. Evolutionary results for different values of noise d .

d Mean Mode Int. Slope Prop. MATP SF Iterations

0 0.26, 0.26 0.04 0.846 1 0.1248 0.1248 58,500

0.00001 0.2611, 0.2596 0.26, 0.26 0.04 0.846 0.9956 0.1248 0.1250 >2,500,000

0.0001 0.284, 0.278 0.28, 0.28 0.12 0.571 0.9814 0.1232 0.1237 216,000

0.001 see below 0.1177 a <2,000,000

0.01 0.358, 0.304 0.3, 0.32 0.24 0.24 0.5042 0.1099 0.115 52,900

0.1 0.434, 0.334 0.38, 0.4 0.56 –0.421 0.0263 0.0744 0.0897 2,594

Int. = intercept of modal firm; Slope = slope of modal firm; MATP = average profit of modal
firm; SF = superfirm profits when playing against all survivors (all firms when d > 0; Iterations =
number of evolutionary iterations performed (as a guide).
a Average profits over cycle (for d = 0.001).
All simulations started from the initial proposition Zi0 = 1/n, i = 1, . . . , 1, 176.

Table V. 107 simulations for d = 0 with different
initial positions.

Frequency Modal firm Profit

66 (0.28, 0.28) 0.1232

29 (0.26, 0.26) 0.1248

12 (0.32, 0.32) 0.1152

describe the modal firm: its intercept, slope, and its proportion and average profits
(MATP) at the end of the simulation. SF gives the superfirm profits at the end of the
simulation, and is defined as in the Tournament except in that the end-of-simulation
weights are used. The last column reports for information the number of iterations
we ran: when d = 0 the simulation ran until surviving firms all earned the same
profits (to 16 s.f.); when d > 0, the simulations ran until the firms proportions were
constant (to 16 s.f.). All simulations converged, except in the case of d = 0.001,
which generated in regular cycle.

When d = 0, we have a very clear result which supports the cooperative hypoth-
esis: the one surviving firm type JPM∗ is the Pareto Dominant NSS from Table II,
JPM∗ earns about average profits in the Tournament. JPM∗ essentially behaves by
imitating its opponents, and in the Tournament this involves imitating lots of weird
firms that earn very low profits. In order to prosper, JPM∗ has to wait until the
replicator dynamics have eliminated such firms.

When there is noise, all firm types survive so that the mean and modal firm types
differ. The second and third row of Table IV obviously represent very low levels
of noise, and the resultant outcome is still very close to the cooperative outcome,
as measured by the MATP. As we increase the level of noise, MATP gradually
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Table VI. The three most common firms when d = 0.001.

Location Intercept Slope Maximum proportion

0.3, 0.3 0.2 0.333 0.6296

0.28, 0.3 0.16 0.5 0.3818

0.38, 0.3 0.36 –0.158 0.3183

decreases, until when d = 0.1, the MATP is not so far from the ATP of the Champ
in Table IV. As d increases, the modal firm moves away from the ‘cooperative’, and
becomes closer to the ‘near profit maximizing’ firm types. This reflects the fact that
as d increases, there is a larger presence of all firm types, bringing the environment
nearer to that of the Tournament.27 Only in the case of d = 0.001 did we find that
the replicator dynamics did not converge to a static population proportions. Instead,
we found a cycle emerged with 3 firm types being most common. These three firms
are given in Table VI, with the last column giving their maximum proportion over
the cycle, which lasts about 12,000 iterations.

The average profits of all three firms are almost the same, but small differences
generate a long cycle: profits of the three firms fluctuate over a range 0.1161 to
0.1187, averaging 0.1177 over the cycle.

3.2. RESULTS: NO NOISE, DIFFERENT INITIAL POSITIONS

In order to investigate the importance of the initial position, we ran 107 simula-
tions for the case of d = 0, with each simulation starting from an initial position
chosen by an algorithm. Since the initial vector Z0i = 1/n is in the middle of
the unit simplex, we decided to use an algorithm that picked extreme initial po-
sitions favoring small clusters of types.28 All of the simulations were run for at
least 250,000 iterations and until the modal firm was stable with a share of at least
0.999, being reported in Table V. The three NSS types with the highest profits are
the attractors here, not the ESS type.29 Whilst JPM∗ is clearly not a global attractor
for the noiseless replicator dynamics, the outcomes generated by these simulations
indicate that there is a strong tendency towards cooperation.

One possible explanation of this tendency is provided if we note that ignoring
stability problems the pure JPM weakly dominates all other strategies in pairwise
contests: if JPM plays itself, it earns 0.125: if it plays type j , it earns ujj . This
is similar to the ‘secret handshake’ story employed by Binmore and Samuelson
(1994) to explain the possibility of cooperation in the PD. There are two main
differences, however. First, our structure has a rich population of strategies, and
none is dominant and possibly none are dominated. Second, in the PD cooperation
is not a Nash equilibrium: in our model it is Nash and NSS. Hence we are observing
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Table VII. Simulations for d = 0 with different initial positions and only the 7 NSS types.

Type 0.26 0.28 0.30 0.32 0.34 0.36 0.38

Number 1218 90 40 21 12 7 5

(%) (87.4) (6.5) (2.9) (1.5) (0.9) (0.5) (0.4)

the selection of the Payoff dominant Nash equilibrium most of the time, not the
selection of a non-Nash outcome.

Lastly, with no noise, we looked at the case where only the NSS firm types
were present.30 The resultant 7 × 7 payoff matrix T7 is included in the Appendix,
Table A.I. All of the pure strategies are ESS within this restricted set: whilst there
exist mixed Nash equilibria, none of these are NSS (see proposition in appendix).
We ran 1393 simulations for different starting points (the algorithm is described in
the appendix), and the results are shown in Table VII (all simulations converged to
one of the types having a share of 1).

Clearly, when we restrict ourselves to the 7 NSS strategies, the tendency to
select JPM∗ is even stronger than when all 1,176 strategies are present, since we
have excluded the rules whose imitation leads to low payoffs.

4. Conclusion

In this paper, we have applied the evolutionary approach to the most commonly
used oligopoly model: Cournot has met Axelrod (or possibly Darwin). We have
been able to reach some quite strong conclusions, and in particular have found that
there is a strong tendency towards collusion when the evolutionary dynamics are
not too noisy. The evolution of collusion in the setting of the replicator dynamics
requires that evolutionary selection is able to weed out the non-cooperative types
of firm before evolution can take hold. The presence of a sufficient level of noise
means that this is unable to occur. When there is a high level of noise, the myopic
Cournot profit maximizer does very well, and is shown to be a robust decision rule
that does reasonably well against all possible firm types it meets.

We can obviously generalize the approach in two directions. First, staying
within the confines of Cournot oligopoly, we can introduce different cost condi-
tions and also differentiated products. Secondly, we can generalize the approach to
different oligopoly models (Axelrod can meet Bertrand and Hotelling, to mention
but a few). This will enable us to see how robust the results we have found here are
when we move outside the simplest Cournot environment.



AXELROD MEETS COURNOT: OLIGOPOLY AND THE EVOLUTIONARY METAPHOR 151

Appendix

(A) THE CALCULATION AND SUMULATION OF THE DUOPOLY PAYOFFS

We outline the method used- the precise programme can be obtained from Steven
Wallis. We ignore the non-linearity created by the non-negativity of output con-
straint, so the stability of H can be diagnosed by the eigenvalues λi = ±(h1i ·
h1j )

1/2. Let us define the point of intersection of the two decision rules in R
2 as x∗.

We consider 4 cases:
Case 1: Stability (h1i · h1j ) < 1. In this case, the roots are within the unit

circle, and the system is stable. The equilibrium payoff is calculated as the payoff
where the two decision rules intersect (allowing for the non-negativity constraint
on output where this binds).

Case 2: Instability h1i · h1j > 1. Here initial output matters. If the output of
either firm is above the point of intersection x∗, then the total output goes to infinity,
and profits are zero. If the output of both firms is below the point of intersection,
then output of both firms falls. Due to the non-negativity constraint, the result is
that: xi = max[hoi, 0] or xj = max[hoj , 0], where one of these will always be
zero. A positive payoff can only occur when the initial outputs are both below the
intersection point. So, we simply assume that the initial outputs are uniform on the
unit triangle, and multiply the above payoff by the probability that the outputs are
below their intersection values (i.e., the product min(x∗

i , 1) · min(x∗
j , 1)).

Case 3: Instability h1i · h1j < −1. Here, because of the non-negativity con-
straint, the system converges on a 4 cycle, in which one of the firms has a zero in
two consecutive periods (without the non-negativity constraint, the system would
explode). We computed the profits over the 4 cycle.

Case 4: Positive unit root: h1i · h1j = 1. This outcome is very unlikely, and
the outcome depends on initial outputs. We took a range of initial outputs and
averaged over the different outcomes (note that in many cases the outputs will both
go to infinity, and hence profits are zero).

Case 5: Negative unit root: h1i · h1j = −1. Again, this is very unlikely. In this
case there are 4-cycles: we start from a range of initial positions, and average.

With this algorithm, we only need to simulate the system in cases 3, 4, 5.

4.1. THE 7 × 7 CASE

Search Algorithm with 7 NSS types.
The following algorithm was felt to allow for each type to start from a range

of initial positions. Consider the unitary vector for each type i, σi which has a 1
in the ith row, and zeros elsewhere, and σA which has each firm with 1/7. For
each type, we take the set of initial positions formed by the convex combinations
λσi1+(1−λ)σA, where λ takes values on a grid on [0,1]. The set of initial positions
is the union of the sets generated by each type i = 1 . . . 7. This set is symmetric
across firm types, and uniform in terms of the distance from the centre σA. The
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Table A.I. The payoff Matrix T7. All figures to 4 d.p.

0.26 0.28 0.30 0.32 0.34 0.36 0.38

0.26 0.1248 0.1231 0.1199 0.1151 0.1007 0.0911

0.28 0.1243 0.1232 0.1199 0.1148 0.1082 0.1001 0.0904

0.30 0.1223 0.1228 0.1200 0.1150 0.1082 0.0997 0.0898

0.32 0.1184 0.1210 0.1196 0.1152 0.1085 0.0999 0.0896

0.34 0.1128 0.1173 0.1177 0.1147 0.1088 0.1004 0.0900

0.36 0.1053 0.1114 0.1138 0.1127 0.1082 0.1008 0.0908

0.38 0.0959 0.1031 0.1073 0.1083 0.1059 0.1001 0.0912

only parameter is the size of the grid. For Table VI, we used granularity of 0.005,
and excluded the extreme values {0.1}, yielding 199 initial positions for each type,
1393 overall).

The 7 × 7 game restricted to the 7 NSS pure strategies.
In the matrix T7 above, each strategy (firm type) is represented by the point

generating it.
There exist mixed strategy Nash equilibria. For example, consider the two pure

strategies corresponding to points 0.26 and 0.28: the 2 × 2 payoff matrix is:

[
(0.1248, 0.1248) (0.1231, 0.1243)
(0.1243, 0.1231) (0.1232, 0.1232)

]
,

where the first row/column is 0.26 (JPM∗) and the second 0.28. There are clearly 2
strict Nash equilibira: the symmetric pure strategy equilibria. There is also a mixed
equilibrium with the probability 0.1667 of playing 0.26, and 0.8333 of playing
0.28. Many such mixed equilibria exist in the full 7 × 7 game. However, it is easy
to show that only pure strategy equilibria can be NSS.

This proof relies on the structure of the payoff matrix. Order the strategies using
uii as the criterion (as depicted in Table A.I). For each i, we can define the (7 − i)

submatrix consisting of all of the 7 − i strategies j for which ujj ≤ uii . This
submatrix has the property that uii is the strictly largest payoff (uii > ukj for all
k, j = i . . . 7 except k = j = i). As a preliminary, let us define mixed strategy
payoff-function E�(Z, Y ), which gives the payoff to an agent playing Z against
Y , where Z, Y ∈ ! (Weibull (1995, pp. 8–9).

PROPOSITION. Let Z be Mixed-strategy Nash equilibrium. If there are at least
2i ∈ S, such that zi > 0, the Z is not NSS.

Proof. We consider mixed strategies Z, Y ∈ !. It is fundamental property of
a mixed equilibrium that all pure strategies in the support earn the same payoff.
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Define Zi to be the pure strategy where zi = 1 and zj = 0 j¬i. The payoff of each
strategy i in the support of Z is:

E�(Zi, Z) = E�(Z,Z) =
7∑

j=1

zjuij .

Now, consider the pure strategy j with zj > 0, and for which ujj > uii for all i
such that zi > 0. Since, E�(Z,Z) = E�(σj, Z), Z is NSS only if E�(σj , σj ) =
ujj ≤ E�(Z, σj). Since ujj > uii , it follows that ujj > uij for all i. Since
E�(Z, σj) is simply a convex combination of uij , ujj > E�(Z, σj), and Z is not
NSS.
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Notes
1 e.g., Hall and Hitch (1939), Cyert and March (1963), Simon (1947).
2 Alchian (1950), Nelson and Winter (1982), Winter (1947).
3 e.g., Binmore and Samuelson (1992, 1993), Canning (1992), Kandori Mailath and Rob (1993),

Young (1993), Selten (1991), Oechssler (1997,9).
4 Gale and Rosenthal (1999) for an analysis of imitation and experimentation with boundedly

rational agents in the context of stochastic stability analysis.
5 The main related literature on evolutionary models since Axelrod has been in modeling the

prisoner’s dilemma using the notion of finite automata. The idea here (following Abreu and Ru-
binstein (1988)) is that rational players select a finite automaton to play the repeated prisoner’s
dilemma (Binmore and Samuelson (1992), Linster (1992, 1994), Nachbar (1992), Probst (1992),
Miller (1993)). The use of the finite automaton is to capture the notion of complexity of the strategy
employed: here we use linear decision rules with one period memory to model possible strategies.

6 If a game possesses a strictly dominant strategy, then one need form no hypothesis about the
other player’s behaviour or beliefs to know that the dominant strategy is the best one to choose, and
the decision is essentially non-strategic. Whilst few applications will possess this property, many
are ‘dominance solvable’. However, iterated deletion requires some suitable notion of common
knowledge and rationality, being inherently strategic reasoning.

7 Weibull (1995).
8 ‘Near profit maximizing’ means that the firm has a decision rule in which its output is chosen to

nearly maximize profits given the output of the other firm in the previous period.
9 In our model, joint profits are maximized with equal profits per firm.
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10 As we show below, Table III, the collusive decision rule JPM is an NSS strategy. Collusion is a
Nash-equilibrium here: the choice between collusion and competition a choice between equilibria as
in the coordination game, not between equilibrium and non-equilibrium as in the prisoner’s dilemma.

11 Whilst the experimental evidence has been subject to debate (Crawford (1991), Van Huyk et al.
(1990, 1997) and the debates summarized in Kagel and Roth (1995, chapter 3)), this has been about
the extent of coordination failure. It is clearly incorrect to say that people will always focus on the
payoff dominant outcome as some theories predict (e.g., Harsanyi and Selten (1998)).

12 Since the Cournot reaction function is linear here, the Stackelburg output is equal to the
monopoly output.

13 There is a technical problem that the output is indeterminate when JPM meets itself. How-
ever, there exist decision rules arbitrarily close to the JPM which yield the symmetric joint profit
maximum.

14 We have used the same method in related papers, Moss et al. (1995) and Bone and Dixon (1999).
15 We have experimented with different algorithms for generating firm types. So long as the al-

gorithm generates a rich population of decision rules, much the same results hold. However, if an
algorithm generates a restricted set of decision rules (for example, only rules with negative slope
coefficients) then the ouitcome of the Tournament and the evolutionary simulation can be very
different. A ‘rich’ population is one that includes the standard types (at least slopes between −1
and +2).

16 Clearly, our Tournament differs from Axelrod’s, in that he did not use a population of strategies
generated by an algorithm like ours.

17 Simulation involves assuming a starting point and having a rule for stopping: the payoff can then
be the average over the whole or part of the simulation. Here the outcome might be sensitive to initial
positions, and using the last few periods profits might introduce an ‘endpoint’ bias. Simulation is
used as a last resort here.

18 This is, of course, equivalent to assuming that there is no discounting.
19 From the game-theoretic perspective, Selten (1991) for an excellent discussion, the other papers

in that special edition of Games and Economic Behaviour, and Binmore and Samuelson (1992).
20 Schlag (1998), Weibull (1995).
21 Weibull (1995) chapter 2 for definitions and a detailed discussion of these two stability criteria.
22 We are restricting our attention to pure strategies. There may also exist mixed NSS.
23 This is because for each strategy i is that is NSS, there is a strategy k which is not NSS, such

that uki = uii , and ukk = uik . Weibull (1995, p. 51) for definitions.
24 Without noise, the replicator dynamics imply that types never go extinct, but stay strictly positive

but near zero. On a computational level, you need to specify a ‘cut off’ point at which you treat the
proportion as zero. This can lead to ‘underflow’ problems highlighted by Nachbar (1992). In our
simulations, we recalculated payoffs for the ‘extinct’ types every ten iterations (thus allowing for
them to make a comeback).

25 Gale, Binmore and Samuelson (1995) tell a specific story of social evolution that gives rise
to replicator dynamics. Every period, a certain proportion of firms change their strategies if those
strategies are below an exogenous (random) aspiration level. Firms which change from their own
strategy adopt a new strategy from the set of existing strategies in proportion to each strategy’s
current proportion. The same story could apply here.

26 See for example Nachbar Proposition 1, p. 313 (1992).
27 This is reflected in the growing gap between the superfirm ATP and MATP.
28 The algorithm was the following: starting from the first point in the grid, pick the first 10 firm

types; give these a weight of 1/100 each (total 0.1), and the rest of the firms an equal part of the
remaining weight (0.9 divided by 1166). The next firm is missed out, and then the next ten are picked
and the new initial proportions calculated as before, and so on. This gives 107 initial proportion
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vectors which we use for simulations: these initial vectors represent a very wide diversity, since they
take a highly skewed distribution. Furthermore, firm types from all over the grid are given a chance
to start off with a large initial proportion.

29 Clearly, (0.34, 0.34) will have some basin of attraction, as may other types: however, these
results indicate that the basins of attraction must be small relative to the three NSS firm types with
the highest payoffs.

30 We would like to thank a referee for suggesting this be done.
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