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BERTRAND-EDGEWORTH EQUILIBRIA WHEN 
FIRMS AVOID TURNING CUSTOMERS AWAY* 

Huw DIXON 

This paper provides a simple solution to the problem of non-existence of 
pure-strategy equilibria in Bertrand-Edgeworth models with strictly 
convex costs. The voluntary-trading constraint in standard Bertrand- 
Edgeworth models is generalized to allow for there being costs incurred 
when customers are turned away. So long as the industry is sufficiently 
large, the presence of such costs ensures that the competitive price will be 
an equilibrium. There will be other single price equilibria, but if the 
offence costs are small, all equilibria will be close to the competitive 
outcome. 

I. INTRODUCTION 

IN MODELS of price-setting oligopoly, it is usually assumed that firms set 
prices, and then given these prices trade occurs. There have traditionally been 
two approaches to the trading process: the first, originating in Chamberlin 
[1933], assumes that the output of firms is equal to consumer demand at that 
price; the second, originating in Edgeworth [1897, 1922], assumes that output 
is determined by a voluntary trading constraint, namely that output is the 
smaller of demand and the firm's profit maximizing output at the price set. In 
Bertrand-Edgeworth models with a homogeneous product, perfectly 
informed consumers and strictly convex costs, there is a general problem of 
non-existence of a pure-strategy equilibrium, resulting from the dis- 
continuities in demand and the voluntary-trading constraint, (see, for 
example, Shubik [1959], Dixon [1987a, Theorem 1]).' This paper suggests a 
generalization of the voluntary trading constraint in standard Bertrand- 
Edgeworth models which with many firms will ensure (a) that the competitive 
price is an equilibrium (Theorem 1), and (b) that any equilibria that exist are 
close to the competitive equilibrium (Theorem 2). 

The idea is very simple, and rests on firms facing a cost to turning 
customers away. In the Chamberlinian framework, firms never turn 
customers away, which implicitly assumes that it is very costly to do so; in 
Bertrand-Edgeworth models, it is assumed that it is costless to turn 
customers away. In this paper we assume that there may be some cost to 
turning customers away. Initially we assume there to be a lump sum cost of 

* I would like to thank two most helpful referees, Michael Tiet Nielson, Peter Skott and other 
workshop participants at Aarhus, as well as seminar participants at Birkbeck/UCL, Cambridge 
and York for their helpful comments. 

' For a comparison of these approaches with differentiated products, see Benassy [1989]. 
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T > 0 to turning customers away: the standard Bertrand-Edgeworth model 
is a special case where Y = 0. It is very plausible to assume that there is some 
cost to failing to meet demand, in terms of loss of goodwill, reputation, or 
offence caused. The presence of such costs is absolutely standard in 
Operations Research and inventory models (see, for example, Taha [1982, 
ch. 13] for textbook treatment and references). This means that firms are 
willing to meet demand in excess of their profit-maximizing supply in order to 
avoid incurring customer offence costs Y. It is crucial that even small offence 
costs Y > 0 can lead to a large increase in supply: this is because at the profit- 
maximizing output the firms objective function is flat, so that an increase in 
output has no first-order effect. The generalization of the Bertrand- 
Edgeworth voluntary trading constraint to allow for costs to be incurred 
when customers are turned away is enough to ensure that the competitive 
price is an equilibrium when the industry is sufficiently large. 

The intuition behind the existence result is very simple. In the absence of 
there being any costs to turning customers away, the competitive price is not 
an equilibrium: if any firm raises its price, then there will be an excess demand 
for the lower priced firms, who will not extend their output beyond their 
supply function. Hence the firm raising its price will face some residual 
demand, and will wish to raise its price above marginal cost (except in special 
cases where industry demand is horizontal at the competitive price, or there is 
some discontinuity in marginal cost). The presence of customer offence costs 
Y will encourage firms to raise their output beyond their usual supply 
function, hence reducing and possibly eliminating the residual demand (and 
hence profits) of any firm raising its price. 

The assumption of lump sum costs is merely a convenient expositional 
simplification, and is in no way crucial to the results. In Theorem 3, we allow 
for the loss of goodwill to vary with the level of unsatisfied demand, e. So long 
as the marginal cost of unsatisfied demand is positive at 0, (i.e. Y= = (e) 
T'(0) > 0), the competitive price is an equilibrium if the industry is large 
enough. This is a very weak condition, and reflects the fact that when firms are 
on their supply functions, there is no first order loss of profits in expanding 
output: therefore output may expand beyond normal supply to avoid a first- 
order cost, which is enough to establish the result. 

The framework and results of this paper are closest to Dixon [1987a]. That 
paper considered the existence of epsilon-equilibria in price-setting with the 
standard Bertrand-Edgeworth voluntary trade constraint: this paper 
considers the case of a strict Nash equilibrium in prices (epsilon = 0), with the 
generalized voluntary trading constraint to take account of customer offence 
costs. The solution to non-existence put forward in this paper is in many ways 
more attractive than that in Dixon [1987a]. First, the result that even small 
menu costs can lead to the competitive price being an equilibrium only 
applied to a particular specification of contingent demand [1987a, Theorem 2 
and Proposition 1]. This paper makes very general assumptions about 
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contingent demand that apply to all of the standard specifications. As such, 
this paper is the only general result establishing the competitive price as an 
equilibrium with contingent demand generated by First-come-first-served 
rationing. Second, although the argument here relies on replication, the fact 
that even small customer offence costs can lead to large increases in supply 
means that the industry does not need to have many firms to be "large". 
Thirdly, we can characterize the complete set of equilibria in this paper (see 
Theorem 2), since all equilibria involve firms setting the same price, whereas 
in Dixon [1987a, Theorem 3] we were merely able to characterize the 
closeness of episilon-equilibria to the competitive price. For a summary of 
other approximation results see Dixon [1987a, p. 49]. In section II of the 
paper we outline the basic framework and assumptions: in section III we 
state and prove the results. 

II. THE BERTRAND-EDGEWORTH FRAMEWORK WITH CUSTOMER OFFENCE 

This paper adopts similar assumptions to Dixon [1987a]. However, for ease 
of exposition we have restricted the generality of the assumptions to the most 
interesting cases. Without replication, there is a set of n identical firms 
producing a homogeneous product. If the industry is replicated r times there 
are rn identical firms. Each firm i 1 . .. rn can set its own price Pi,6O, oo), the 
rn vector of prices being P. 

Assumption I (Al). Costs. Each firm has a total cost function 
C: R + -* R , which is strictly increasing, continuously differentiable, and 
strictly convex in output xi. 

This enables us to define the supply function S: R + R + where: 

S(p) argmax p xi - c(xi) 
xi 

Note that under (Al), S is a continuous strictly monotonic function. The 
corresponding profit function is t(p): 

d(p) p S(p) - (S(p) 

The supply function gives the profit maximizing output at any given 
price. We now assume that there is a fixed lump sum cost Y to turning 
customers away. This can be seen as arising because of the offence or 
frustration caused to customers when they are unable to buy all they would 
like from a particular firm at a posted price ('loss of goodwill'). In the 
Chamberlinian framework, where customers are never turned away, Y is seen 
as being very large. In the standard Bertrand-Edgeworth framework, T = 0, 
and firms will turn customers away if demand exceeds supply as defined by 
S(p). However, the Bertrand-Edgeworth assumption is in some way as 
extreme as the Chamberlinian: although we do not model it formally here, it 
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seems reasonable that there will be some loss of reputation caused by failure 
to meet demand. Shopkeepers and firms do not like to turn away customers 
empty-handed. The crucial point is that even if the costs of offence are small, 
they may still have a significant effect on the willingness of the firm to supply 
more output than S(p). This is because at S(p) there is no first order effect on 
profits of an increase in output: depending on the convexity of the cost 
function, even small offence costs can lead to a large increase in supply 
forthcoming from a firm. 

In order to analyze the effect of offence cost we will define the largest output 
at each price that the firm is willing to supply to avoid incurring V. This is 
given by the augmented supply function u: 

u(P) _ max {x: p x-c(x) > 4(p)-V} 

The extra output that can be elicited by the avoidance of customer offence is 
o(p)-S(p). For V > 0, this is strictly positive. To illustrate the notion that 
even small offence costs can have an important effect, consider the cost 
function c(x) = cx2/2. In this case, v(p)-s(p) = +X/(2 V/c). For any given 
V > 0, the extra output can be large if c is small (the 'less convex' is c(x)). If 
demand exceeds o(p), then it is not worth the firm meeting demand, and it will 
prefer to incur offence cost V and produce at S(p), earning profit d(p) - Y. 

Turning to the demand side, the industry demand function gives the 
demand when all firms set the same price: 

Assumption 2 (A2). Industry Demand. With r replications, industry 
demand is given by rF(p) where: 

(a) F(O) = K where K is strictly positive and bounded 
(b) There exists p such that for all p > p, F(p) = 0. 
(c) F is continuous, strictly decreasing and differentiable on [0, p). 

Assumptions (Al) and (A2) are not as general as they could be. In particular, it 
would be simple to generalize (Al) to weak convexity so that it encompasses 
the Bertrand model. However, if c has affine segments, then s is a cor- 
respondence, the firm being indifferent between outputs. The presence of 
offence costs V > 0 is irrelevant in this case, since there is no cost to meeting 
additional demand. The assumption of strictly convex costs focuses on the 
important cases. We are now in position to define the competitive price 0: 

(1) F(0) = nS(0) 

To ensure that 0 is uniquely defined, and to avoid trivialities, we assume 
S(p) > 0, so that 

- 
> 0 > 0. Note that replication does not alter 0 (replication 

multiples both sides of (1) by r). 
We now come to the trading process and the specification of the contingent 

demand function. The contingent demand curve for firm i gives the demand 
for its output as a function of the rn prices set: 
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Definition: Contingent Demand dri: Rrn R + dri = dri(P) 

We have discussed the specification of contingent demand in Bertrand- 
Edgeworth models in Dixon [1987a], and more generally in Dixon [1987b]. 
Let us first define the output xi produced by firm i setting price pi given the 
level of demand dri: 

(2) Xi{S=dri dri < Y(pi) S(pi) dri > o(Pi) 

Equation (2) generalizes the voluntary trading constraint, and says that the 
firm will meet demand up to the augmented supply curve a. If demand 

Output 
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Figure 1 
Voluntary Trading with Offence Costs 
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exceeds u(pi), it will pay the firm to turn away customers and reduce output to 
S(pi). This is depicted in Figure la, with demand on the horizontal axis, and 
output on the vertical: in Figure lb, the corresponding profits are given. With 
y = 0, (2) reverts to the standard "min" condition for voluntary trading in 
Bertrand-Edgeworth models (xi = min [S(pi), dri]). Here, trade can occur at 
outputs greater than S(Pi), because the firm is willing to expand production 
over the profit maximizing supply to avoid offending customers. However, 
note that the underlying trading process is exactly the same as in the 
Bertrand-Edgeworth model: the firms set prices p, and then voluntary 
trading occurs given those prices. 

Given the trading process, there are different ways of specifying contingent 
demand (see Dixon [1987a], [1-987b]). For the results of this paper, we only 
need to specify very general properties of the contingent demand functions dri, 
which are satisfied by the two most common specifications (CCD and FCFS 
in Dixon [1987a, p. 53]. As we show below, all equilibria are single-price 
equilibria, so we will be interested in contingent demand of firm i when all 
other firms set the same price, which we will write as dri(pi, p) for shorthand. 

Assumption 3 (A3). Contingent Demand 

P1: For all pi > 0, dri(p) < rF(pi). 
P2: If pi is the lowest price (pi < pj for all j ai): dri(PiP-i)=rF(pi) 
P3: If pi = pj, dri = drj. 
P4:d,i(pi,p-i)=O ifforsomej pj<pi and drj=Xj. 
P5: dri is continuous except when there exists j such that pj = pi. 
P6: dri is strictly decreasing when positive and continuous. 

P Lim dri(P + , P) =n-1)(p) > F(p) 

E o r rF(p) - (rn - 1)S(p) otherwise 

Properties P1-P6 are completely standard: P3 is an equal shares assumption; 
P4 says that a lower priced firm j meets all demand, then higher priced firms 
will have no demand. Note that unlike Bertrand-Edgeworth models, we can 
not say that dri is everywhere decreasing: this is because at points of dis- 
continuity, a small rise in price pj may trigger firms still at the initial price 
back to their supply S(p) if demand for their output is increased above o(p). 
Property 7 merely states that if lower priced firms meet all demand (i.e. 
(rn - 1)a(p) > F(p)), then dri = 0 for prices pi > p. If lower priced firms do not 
meet demand ((rn - 1) c(p) < F(p)), then the limit of dri as pi tends to p from 
above is industry demand less the supplies of lower priced firms (i.e. 
F(p) - (rn - 1)S(p)). Again, this property is satisfied by all standard specifi- 
cations of contingent demand. The most common specification of contingent 
demand is variously called parallel/efficient rationing or Compensated 
contingent demand (CCD). In the presence of excess demand, one can 
imagine identical consumers being rationed on an 'equal shares' basis; in the 
absence of income effects (or with compensation), the residual demand for 
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higher priced firms is then industry demand less the output of lower priced 
firms. In the case of duopoly, we would have: 

F(p1)-S(p2) P1 > P2 

dj(pj,pj) = F(p1)/2 Pi = P2 

F(p1) Pi < P2 

It can be verified that Properties P1-P7 of Assumption 3 are satisfied. 
We are now in a position to define the Payoff function for each firm, giving 

profits as a function of prices set p given contingent demand function drj(p): 

Definition: Payoff function lrj Rrn -+ R 

Irj) = (Pj) - drj(P) > a(pj) 

flrj(_)-Ip; { drj(p) 
- 

c(drj(p)) otherwise 

We will be considering the existence of pure-strategy Nash-equilibria in the 
game [[0, p], lrj: j = 1 ... rn]. First, however, it is useful to recall existing 
results in this framework when Y = 0: (a) Under A1-A3, no equilibrium in 
pure strategies exists (Dixon, [1987a, p. 54]); (b) Under A1-A3, an 
equilibrium in mixed-strategies exists (Dixon [1984, p. 207]), and Maskin 
[1986], based on Dasgupta and Maskin [1987a, b]). 

That no equilibrium in pure strategies exists is not a recent result: it dates 
back to Edgeworth's studies of his cycles [1897] and [1922]. The reason 
behind the non-existence can easily be illustrated when we note from the 
definition of 0 and A3-P7 that dri are right-continuous around 0. At the 
competitive equilibrium, each firm produces at price equal to marginal cost, 

xi = S(0), and ri = ,(0). If a Nash-deviant raises its price from 0, its change 
in profits is: 

@fIril@Pi = S(0) + (0- c'(S(0)) * @dril@Pi 

Since price equals marginal cost at the competitive outcome, 0 = c'; so long as 

@dri/@pi is bounded (i.e. demand is not horizontal), the second RHS term is 
zero so that @lIri/@pi = S(0) > 0. Since there is no first order loss to a 
reduction in output, it always pays the Nash-deviant to raise its price above 0, 
so that the competitive outcome is not an equilibrium (see Dixon 1987a, 
Theorem 1). As is well known, the only possible pure-strategy equilibrium in 
Bertrand-Edgeworth models is the competitive outcome (Shubik [1959, 
p. 100, Theorem 2]). 

This non-existence result does pose a genuine problem. One response is to 
employ different assumptions about cost to Al to guarantee the existence of a 
pure-strategy equilibrium: usually by assuming constant average/marginal 
cost (as in the Bertrand case). The alternative is to use mixed-strategy 
equilibria. These are open to questions of plausibility. However, the most 
serious problem with mixed-strategy equilibria in Bertrand-Edgeworth 
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models is their precise characterization. Despite much recent work on this 
(Allen and Hellwig [1986], Kreps and Scheinkman [1983] inter alia), at 
present we do not know what a mixed-strategy equilibrium looks like outside 
of the Edgeworthian world of constant unit cost up to capacity. Certainly, no 
one has managed to say much about the class of mixed-strategy equilibria 
corresponding to the strictly convex and continuously differentiable cost 
functions of Al. In this paper, in contrast, we can establish not only the 
existence of equilibria, but also characterize the full set of equilibria (at least in 
a large industry). 

III. THE EXISTENCE AND CHARACTERIZATION OF EQUILIBRIA 

Our first result concerns the competitive price 0: for given T > 0 if the 
economy is large enough, then 0 is an equilibrium in [ [0, P], fI]: j-= I ... rn]. 
That is, if each firm sets the competitive price, they will have no incentive to 
deviate. 

Theorem 1 (Existence). Let Y > 0. There exists r' such that for r > r', 0 is 
an equilibrium. 

Proof Define i(0) - S(0) b. b > 0 since T > 0. Will firm i wish to 
deviate from 0 by raising his price pi > 0? Not if d,i(pi, 0) = 0. We now show 
that there exists r' such that for r > r', dri(pi, 0) = 0 for all pi > 0. If 
(rn- 1)a(0) > r F(0), then dri(pi, 0) = 0, by P4 and P7 of A3. But we can 
ensure: 

(rn- 1)o(0) > rF(0) 
(rn- 1)b > rF(0) - rnS(0) + S(0) 

> S(0) 

This will be satisfied for r > r' where 

S(0) 1 
(3) r' 7 ( +- 

n-b n 

Hence, when r > r' firm i will not raise its price above 0. Standard arguments 
show that the firm will not cut its price. Therefore for r > r', 0 is an 
equilibrium. QED. 

At the competitive equilibrium 0 all the firms are producing at their profit 
maximizing outputs S(0). However, at that price, firms are willing to supply 
up to b units more if it is demanded to avoid offending customers and 
incurring cost Y. If firm i raises its price above 0, this will cause the rn - 1 
other firms still setting r either to expand their output to meet the additional 
demand if (rn - 1)a(p) > rF(0), or to stay at S(0) otherwise. In fact, it should 
be apparent that it may not need many firms to ensure that 0 is an 
equilibrium. There are rn-I firms each willing to produce b more units to 
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meet demand: the extra demand generated as customers switch from i is only 
equal to S(O) for any r. Equation (3) says that so long as the total number of 
firms rn is greater than S(0)/b plus one, the extra demand will be satisfied. 
Again, recall that even quite small offence costs Y can generate a significant 
value for b, since xi is optimal at S(O). We will illustrate Theorem 1 with 
c(x) = cx2/2 and F(p) = 1-p so that we have: 

c~~~~~ 
0 c ; S(O)= ; b=V1(2T/C) 

n+c n+c 

Hence the number of firms required to ensure that 0 is an equilibrium is r'n 
where: 

r'n =1+ 1/ 
(n + c) >,/(2T) 

Clearly the number of firms r'n need not be particularly large if c is small. 
The knowledge that the competitive price can be in equilibrium is useful, 

Price 

p 

n, S(P) 

n, o(P) 

0 

/ A~~~~~~~~~~F(P) 

- output 
K 

Figure 2 
Definition of Pb 
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since the presence of offence costs Y provides a plausible justification for the 
competitive market outcome. However, this may not be very useful unless we 
can characterize the full set of equilibria. This turns out to be quite easy to do. 
First, however, we need some more definitions. 

Definitions. Let Y > 0. 

(a) We define Pb by: F(pb) = n N(Pb) 
(b) We define Ph by: Ph > 0, and 

(4) Ph * F(Ph)/nl-c(F(Ph)/n) = 4(Ph) - 

Note that under A1-A2, Pb exists (for Y small) and is unique. Pb is the price at 
which demand equals the augmented supply rna, and is depicted in Figure 2. 
Clearly, Pb < 0, and as Y tends to zero, Pb tends to 0 with Pb = 0 when Y = 0. 
Ph iS the price at which firms are indifferent between setting the same price 
(and sharing demand), and undercutting. This need not be uniquely defined 

Profits 

4(P) 

/ (P) - 

(P) - 

C(F(P)/n) 
n 

I I 
0 Ph Price 

Figure 3 
Definition of Ph 
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under A2, and for simplicity we will add the stronger assumption that demand 
is not too convex to make the LHS of (4) convex in P: 

Assumption 4 (A4). pF(p)/n - c(F(p)/n) is weakly concave in p on [0,1p]. 

Under A1-A4, Ph is uniquely defined, as depicted in Figure 3. Again, note that 
at 4(O) = OF(O)/n - c(F(0)/n), since demand equals supply, so that Ph > 0 for 
T > 0, and P.0 as T-+0, and Ph = 0 for Y = 0. Armed with these 
definitions, we can now characterize the full set of equilibria in the Bertrand- 
Edgeworth model with customer offence. First we will show that there can be 
no multiple price equilibria, so long as T is not large. The reasoning is similar 
to that in standard Bertrand-Edgeworth models. However we state the 
argument fully in this slightly different context. 

Proposition. Let Y > 0, with Y < 4(Pb). Then any pure-strategy Nash- 
equilibrium in [ [0, P], Hr,: j = 1 ... rn] is a single price equilibrium. 

Proof. Assume the contrary, so that two firms set different prices pi > pj. 
Either dri(pi, p-i) = 0 or dri(Pi, P - ) > 0. If dri(Pi, P -) = 0, then 
lJri(Pi, p - = 0: so firm i can set pi = Pb and earn at least 4(Pb) - T > 0, thus 
raising its profits (note that if it sets price Pb, then its demand is at least OU(Pb) 

whatever prices other firms set). If dri(pi, p - ) > 0, then firm j is not meeting 
demand, and from A3 property 7 can raise its price a little, sell the same 
amount, thus raising its profits. QED. 

We can now characterize the set of equilibria given T as r becomes large. 
Since these will all be single price equilibria from the Lemma, we will denote 
the rn vector where for all i pi = p by p. 

Theorem 2. Let Y > 0. 

(a) If p e(Pb, Ph], there exists r' such that for r > r', p is an equilibrium. 
(b) If p < Pb or p > Ph, there exist r' such that for r > r', p is not an 

equilibrium. 

The proof is simple, but needs to exhaust several different cases, and so is in 
the appendix. Theorem 2 shows that as the industry becomes large the set of 
equilibria tends to (Pb, Ph]. As such, for any T > 0 there will be prices above 
and below 0 which will be also equilibria. The reason that prices above 0 can 
be equilibria is that if firms undercut they will have to turn away customers 
and incur offence costs Y: Ph iS the price at which the firm is indifferent 
between setting the same price as the others, and c-undercutting to capture 
industry demand with the consequence of turning away customers. Prices 
between 0 and Pb can be equilibria because the potential augmented supply of 
firms exceeds industry demand at that price; hence, as at 0, if there are enough 
firms then any individual firm will face zero contingent demand if it raises its 
price. At Pb firms are on their augmented supply functions, being indifferent 
between serving all demand xi = U(Pb), and turning away customers 
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xi = S(pb): in both cases profits are 4(Pb) - . This is a knife-edge situation, no 
matter how large the industry, if one firm raises its price, the demand for the 
remaining firms will exceed their augmented supply, so that from (2) they will 
cut supply to S(pb), and from A3 property 7 the firm raising its price a little 
will find that its demand has increased, enabling it to increase its profits. 

From the definitions of Ph and Pb, we know that for small T any equilibria 
which do exist will be approximately competitive: 

Corollary. Let E > 0. There exists r' and T such that for r > r', if p is an 
equilibrium, I p- l < - . 

Proof From Theorem 2(b), there exists r' such that, for r > r' if p is in 
equilibrium then p C(Pb, Ph] But as T O? 0, Ph - Pb - 0, establishing the 
corollary. QED. 

Note that the driving force behind the approximation result is the smallness 
of T: r does not need to be large to satisfy Theorem 2(b). 

Lastly, we will discuss the generality and robustness of the results. Given 
the Bertrand-Edgeworth framework, A1-A3 are very general, and as we 
discussed we could have generalized A1-A2, but chose not to for 
expositional efficiency. The most crucial assumption is that there are lump- 
sum costs of offence. An alternative would be to allow the costs to vary with 
the level of unsatisfied demand. If we actually envisaged people queueing up 
at lowest priced firms first, and then if turned away going to higher priced 
firms, this would make sense. This, however, is a very mechanical inter- 
pretation of the contingent demand curve, and goes against the Bertrand- 
Edgeworth spirit of a frictionless market with perfectly informed customers. 
Contingent demand merely says how much a firm could sell, rather than the 
length of queues it will have. However, despite this, what would the effect be of 
allowing offence costs to vary with the number of unsatisfied customers? If 
there is a "lump sum" element, then of course there is no significant difference. 
However, if offence costs tend to zero as unlsatisfied demand tends to zero, 
matters may be different. 

Let us define ei to be the level of unsatisfied demand (the 'number' or 
'measure' of customers not served by firm i): e, = dri-xi. We now allow 
Yi = T(ei). We need to make some assumptions about TY(), and a convenient 
additional assumption about the cost function: 

Assumption 5 (A5). 
(a) the cost function c(-) is twice continuously differentiable. 
(b) T(-) is continuously differentiable, non-decreasing, with T(0) = 0, and 

as e -*0, Y(e)/e --T'(0) > 0. 

Theorem 3: AJ-A3, A5. For r large enough, 0 is an equilibrium. 

Again, the proof is lengthy, and so is in the appendix. What matters then, is 
not the lump-sum nature of Y, but rather the marginal cost of unsatisfied 
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customers at e = 0. Because there is no first-order cost to expanding output at 
S(O), it is enough that there is a first-order cost to turning customers away. If 
loss of goodwill is to mean anything, then surely A5(b) must be satisfied. 
Intuitively, it would seem most natural that T(-) is concave, with declining 
marginal customer offence costs, which eventually tend to zero. The notion of 
convexity is very unappealing, since it implies that offence costs may be 
unbounded, so that in a large industry, firms will be unwilling to undercut 
other firms for fear of attracting too many customers, which is implausible. 
Concavity, however, is consistent with Y being bounded. 

What can we say about other equilibria with variable offence costs? A 
formal analysis would be rather complex, needing much more structure for 
contingent demand than is provided by A3. However, we can note that so 
long as T is bounded, then the set of equilibria will be much as in theorem 2, 
with some prices above 0 (for which undercutting is not worthwhile), and 
some below (since under A5b firms will expand output beyond the supply 
function to satisfy demand). So whilst the assumption of lump-sum offence 
costs is both conventional and convenient, the results of Theorems 1-2 do not 
rest on it. 

IV. CONCLUSION 

This paper provides a simple solution to the problem of non-existence of 
pure-strategy equilibria in Bertrand-Edgeworth models with strictly convex 
costs. The voluntary-trading constraint in standard Bertrand-Edgeworth 
models is generalized to allow for there being costs incurred when customers 
are turned away empty handed. So long as the industry is sufficiently large, 
the presence of such costs ensures that the competitive price will be an 
equilibrium. There will be other single price equilibria, but if the offence costs 
are small, all equilibria will be close to the competitive outcome. The main 
body of the paper assumes that there are lump-sum costs to turning 
customers away, which do not vary with the level of unsatisfied demand. 
However, it is not the lump-sum element that is crucial: rather it is that the 
marginal cost of turning away the first customer is positive. 

The results of this paper will be useful, since they provide a simple 
justification for using the competitive equilibrium in a market with price- 
setting firms with strictly convex costs. As is well known, there is a paradox in 
standard competitive models: everyone is a 'price-taker', yet prices are 
presumed flexible. This paper suggests that we can avoid this problem 
because price-setting firms will behave as if they were price-takers. The 
assumptions made are very general, and represent a significant advance on 
standard Bertrand models with constant marginal cost. The model may also 
provide a theory of (limited) price rigidity in competitive markets. There is a 
continuum of possible equilibrium prices with the competitive price in the 
middle (as it were). Changes in demand (or supply shocks) could move this 
interval of prices around. For small changes, it is possible that the same price 
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could remain in the equilibrium interval, so that no change in price need 
occur. Thus we would have a competitive market where prices only respond 
to shocks that are large enough. In a macroeconomic framework, even 
though small, such rigidities can have important implications for macro- 
economic stability. 
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APPENDIX 

Proofs of Theorems 2 and 3. 

Theorem 2. Let T> 0. 
(a) If P ? (Pb, Ph]' then there exists r' such that for r > r' p is in equilibrium. 
(b) There exists r', such that for r > r', if p < Pb or p > Ph, then p is not an equilibrium. 

Proof We already know that 0 satisfies part (a) of the Theorem. We will break the 
proof into four cases: p < Pb and p > Ph (which together establish (b); Pb > p > 0 and 
0 < P < Ph to establish (a). 

To establish part (b) of the Theorem, consider: 

Case 1. P > Ph. For p > Ph' then so long as rF(p) > S(p): 

sup Ii(pi, P) = 4(P)- Y 
pi <p 

From the definition of Ph, noting A4, it will pay firms to undercut p by some small 
amount, despite incurring offence costs Y. 

Case 2. P < Pb- Here for all firms i, d,i(p) >? c(p), with equality for p = Pb' strict 
inequality p < Pb- For p = Pb, firms produce cr(Pb), earning ';(Pb)-Y; for p < Pb S(p), 
earning 4(p) - Y. If firm i raises its price, it can increase profits from property 7 of A3. 

Lim dri(p + E, p) = rF(p) - (rn - 1)S(p) 
e -0 

> S(p) 

This holds true at p = Pb because when i raises price, other firms j switch from 
Xj = o(pj) to S(pj) since drj(Pi, p) > U(p.) when pi > p. Hence, from property 6 there 
exists p'?(p fi) such that dri(p',p) = S(p'). So firm i will increase its profits to 

~(p') > (p)-Y. Hence, p < Pb is not an equilibrium. This establishes Part (b) of the 
Theorem. 
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Turning to Part (a), we will consider cases 3-4: 

Case 3. Pb < p < 0. For prices in this interval: 

nS(p) < F(p) < ne(p) 

and each firm produces xi = F(p)/n. No firm will want to undercut (and incur offence 
costs) so long as rF(p) > u(p). We will show that for r large enough, no firm i will want 
to raise its price, since: dri(Pi, p) = 0 for pi > p. If firm i raises its price, the residual 
demand is zero when: 

(5) rF(p)-(rn- t) c(p) < 0 

-c 
For r > inequality (5) is satisfied (i.e. there is excess supply) so that from 

F(p)- no( P) 

Property 7, dri is zero for pi > p, since demand is met at the lower price. 

Case 4. 0 < p < Ph. For prices in this range, firms are tempted to undercut. So long 
as rF(p) > v(p), 

sup fHri(pi, P) 4(P) 
pi <p 

By definition, under A4, it will not pay to undercut (see Figure 3). 
This establishes Part (b) of the Theorem. QED. 

Proof of Theorem 3. 
As a preliminary, we need to consider the cost to the firm (AH) of expanding its 

output by Ax units of output above the optimal output S(0). By the Mean Value 
Theorem, given Ax there exists x' a[S(0), S(0) + Ax] s.t.: 

An= (- ac(x') Ax 
Ox 

Similarly, there exists x" e[S(0), x'] such that: 

ac(x') ac(S(0)) a2c(x") 

ax ax x2 

Hence: 
0 c(x") 

Afl x2* (x'-S(0)) * Ax 

Under A5a, 02C/aX2 is bounded from above by c > 0 (since xe[0, c(f-)]), so that the loss 
in profits obeys: 

(6) AfIF < c Ax2 

since (x'- S) < x. This provides an upper bound for the loss the firm makes by 
expanding output beyond the profit maximizing level. 

To establish Theorem 3, we show that if the industry is large enough, then when a 
Nash-deviant raises its price, to pi > 0, then the rn - 1 remaining firms will raise 
output to cover the extra demand of S(0), thus driving i's profits to 0. Hence 0 will be 
an equilibrium if expanding output by Ax = S(0)/(rn -1) leads to less losses than 
incurring offence costs X(S(0)/rn - 1). From (6) above this means that: 

(7) ( rn-() )>C r (i)) 

~rn- 1 
5 

rn-1I 
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Under A5b, by the mean value theorem: 

(8) T i 
) Y(O) + Y'(e')( S(O)) 

where 0 < e' < S(O))/(rn - 1). Since T is continuously differentiable, and under A5b 

T'(0) > 0, for rn large enough, there exists T > T'(O)/2 > 0 s.t.: 

(9) min eE[0,S()/(rn-1)1 T'(e) > 

Since T(O) - 0, from (8): 

(10) T (S(O) >\ ~ S(O) 
(10) T(rn-1l rn-1 

Returning to our equilibrium condition (7), using (10) we have: 

_. S(O) S(0) 02 

rn-1 rn-1J 

_ S(O) 

rn-1 

But this equilibrium condition must surely be satisfied for rn large enough, i.e. 
rn > r'n = 1 + c[S(O)/T]. Hence for r > r', and r large enough to satisfy (9), any firm 
setting pi > 0 will sell nothing, dri = 0, thus establishing the Theorem. QED. 
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