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The standard theory of consumer behaviour is based upon the
assumption that there can only be a single price for any one commodity. If,
however, we wish to understand price-setting behaviour in a market for a
homogeneous product, we need to develop the theory of consumer
behaviour to allow for a household to face several different prices in a given
market. This theory is of particular importance for models with price-setting
firms — recent examples include Allen and Hellwig (1986); Brock and
Scheinkman (1985); Dasgupta and Maskin (1986); Dixon (1984, 1987);
Gelman and Salop (1983); Kreps and Scheinkman (1983). The contingent
demand function tells the firm its demand as a function of its price, given the
prices and quantities offered by other firms. Existing treatments of
contingent demand tend to make very specific assumptions and little is said
about the microfoundations of contingent demand. This paper develops a
general theory of contingent demand and considers the additional
assumptions needed in order to use the standard specifications used in the
literature. Although the theory is developed in the context of households
who are price-takers, the analysis is also of relevence to strategic market
games (for example, Benassy, 1984 Dubey, 1982; Simon, 1984). The
general theory of household demand developed in Section II is also
applicable to the case of markets with differentiated products.

1 COMMON SPECIFICATIONS OF CONTINGENT DEMAND

Before outlining the results of this paper we shall briefly summarize the
standard treatments of contingent demand. Suppose that households face
several different prices in a given market. Each seller i sets a price p;,
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and offers to sell up to x;° at that price. The contingent demand function for
seller [ tells him how much he could sell if he sets p;, given the prices and
offers-to-trade of the other sellers. Thus in its most general form the
contingent demand function for the ith selleris D;: R~ ' — R+

Di= Ddpup-52%) 0000 s (1.1)
where p_;and x?; are the n — 1 vectors of the prices and offers-to-trade of the
other sellers.

There are two alternative methods of specifying (1.1) employed in the
literature. Since most of the literature is concerned with price-setting
duopoly, we shall follow suit and consider the case of two sellers, n = 2 (this
obviously generalizes). The starting point for defining contingent demand is
the industry demand function, F(p). All authors agree that the lower-priced
seller will have the opportunity to serve the full industry demand. If both
sellers set the same price it is often assumed that both sellers face the same
contingent demand (the *‘equal shares™ principle), or some other such
principle.! The important differences arise when we consider the contingent
demand for the higher-priced seller (seller 1, say).

The traditional approach since Edgeworth (1897, pp. 111—42) has
been to assume that the contingent demand for the higher-priced seller 1 is
that proportion of industry demand left unsatisfied by the lower-priced
seller:

D,(py, p2, x3) =F(p:).[l = Ffpgz)] o (1.2)

This specification of contingent demand has been employed by Allen and
Hellwig (1986); Bekman (1965); Dasgupta and Maskin (1986); Gelman and
Salop (1983); and Shubik (1955, 1959, Chapter 5). As is clear from
Edgeworth’s account (op. cit.), (1:2) naturally accords with the notion that
the lower-priced seller serves only a subset of households, so that the
contingent demand for seller 1 is constituted by the demands of those
households left unserved by the lower-priced seller. Hence we denote the
specification (1.2) as Edgeworthian Demand (ED).

The second specification is rather more recent, originating in Levitan and
Shubik’s article (1972), and has been used more recently by Brock and
Scheinkman (1985); Dixon (1987); and Kreps and Scheinkman (1983). Under
this specification the contingent demand for the higher-priced seller is:

D(p, p2, x3) = F(p,) — x3 (-7 /) N (1.3)
As we shall see below, there are a number of rationales for (1.3). One is that

'Alternatives include Gelman and Salop’s (1983) “lexicographic preferences’, by which one
firm is preferred by consumers over another, or Allen and Hellwig’s principle that demand
1s proportional to amount offered (1983).
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the contingent demand of a single household will yield (1.3) if we ignore the
“income effect” resulting from the household’s purchase of x? at a lower
price p,, and interpret F(p) as the household’s Marshallian demand (below,
Section III, case 1). Hence we denote the specification (1.3) as Compensated
Contingent Demand (CCD).

These two specifications are dissimilar, and can have very different
implications depending on the model in which they are used. The mixed
strategy solutions in price-setting oligopoly will be different, for example, as
will the upper and lower bounds of the Edgeworth cycle.

The most important difference is the close connection between the
CCD specification of contingent demand and the Cournot inverse demand
function. From (1.2) taking the inverse of F we obtain:

pr=F-'g+Dy) e (1.4)
as in the Cournot model. This connection, which we can call the “CCD-
Cournot identity” partly explains the close relationship between the
Cournot equilibrium and price competition under CCD when firms choose
their capacities (x¢), as in Kreps and Scheinkman (1983) (see Levitan and
Shubik, 1972, also). No such connection with the Cournot demand exists for
FCFS, for which the notion that “quantity precommitment and price
competition yields the Cournot outcome” is not generally valid.

The choice of contingent demand can thus have very important
economic implications.” This paper explores the microeconomics of
contingent demand, both at the level of the household (Sections I and II)
and at the aggregate level of the market (Sections I1I to V). This analysis not
only provides a better understanding of contingent demand but also will help
in providing grounds for choosing the appropriate specification. Whilst this
paper explores the conditions under which the CCD and ED specifications
will be appropriate, we also introduce an alternative specification, the True
Contingent Demand (TCD), based on the household’s contingent demand
(Section III, equation (3.13)). The TCD specification includes income
effects due to the purchase of output at different prices.

II THE HouseHOLD'S CONTINGENT DEMAND — THE GENERAL CASE
With the significant exception of Shubik’s brief diagrammatic
exposition (1959, pp. 82-85), the literature has hardly dealt with the
“reconstruction’ of an individual’s demand. This stems from the fact that
since Edgeworth’s original 1897 article it has been customary to assume that
customers are satisfied either fully or not at all by any one seller.
*Another example is given by Dixon (1986), where the existence of approximate equilibria in an
industry with price-setting firms is studied in the context of replication. Whilst for CCD it is

found that for any € > (), an e-equilibrium will exist if the industry is large enough, this is not
found to hold for ED.
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In this section of the paper we model the consumer’s contingent
demand using a slightly adapted version of consumer theory under
rationing. Suppose that there are N sellers in the entire economy. We can
then treat each seller’s output as a separate commodity. If several sellers sell
an identical commodity, this simply comes under the extreme case of perfect
substitutes in the case of a (weakly) quasi-concave utility function. Let x be
the N-vector of the household’s desired consumption, with x; its purchase
from the ith seller. The offer-to-trade of the ith seller is to sell up to x;° at
price pi, p being the N-vector of prices set. The household has the usual
budget constraint so that expenditure p.x is less than its money balance m.
(Assume throughout that p;, x;, x° € R+ .)

The contingent demand function tells the ith seller the largest amount
he could sell (were he willing). The relevant programme for deriving the
contingent demand is thus where the household maximizes its utility subject
to the budget constraint and the offers to trade of the other sellers j # i. But
this is simply the “Benassy” form of effective demand (see Benassy, 1975,
1978), with suitable reinterpretation. The essence of Benassy’s formulation
1s that when a householder visits the ith market (interpreted here as the ith
seller) he formulates his effective demand ignoring any constraints in that
market, taking into account only (perceived) constraints in other markets
(Benassy, 1978, p. 9-10). If we were to include the ith seller’s offer to trade as
a constraint, then we would have a formulation closer to Dréze (1975). We
can write the ith seller’s contingent demand as solving the programme:

max WX . (2.1)
s.t. px=m L. (2.2)
O=x<x} jElewNytE]l 00 s (2.3)

where W : RY — R is the household’s utility function, assumed to be weakly
quasi-concave. The ith seller’s contingent demand is given by the value(s) of
x; that solve (2.1-3). The resultant contingent demand correspondence will
be upper hemi-continuous, convex valued, and closed (it will also be
bounded for p->> 0).

Consider the following very simple example, where there are two
sellers of perfect substitutes, so that W = x, + x,, and we restrict ourselves to
pi > 0 and x¢ < m/p,. If we consider the contingent demand for seller 1, we
have:

max x; + X
X, X,
s.t. Pi-x|tprxas=sm
0=x,=<x!
The solution to this is the upper hemi-continuous correspondence
D;: RY = Ry.:
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m — p,.x5/p, P1>P:
D, =<[m— p,.x%/p,,m/p,] Pi1= P2
m/p, P <p:

This contingent demand correspondence is depicted in Fig. 1. Note that
since the contingent demand for each seller solves a different programme,
there is no requirement that they *““add up” to the total desired purchases at
that price. For example, if both firms set the same price, and offer to sell
nothing, then D, = D, = m/p,, and the total value of contingent demand is
equal to twice the household’s money balance. Evidently, contingent
demands do not satisfy Walras’s Law.
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Fig. 1
The First Seller’s Contingent Demand

It is thus possible to reformulate the derivation of household contingent
demand from the standard theory of effective demand. All that is needed isa
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little reinterpretation: we treat each seller’s output as a commodity itself. As
we have shown from our simple example, we can use the definitions of
effective demand to derive the specific household contingent demand
function for a seller.

Whilst the formulation of contingent demand presented in this section
is very general, it might be more useful in some circumstances to specialize it
somewhat. In particular, it may be that the very generality of the
formulation leaves out some more specific information which we certainly
can assume: that is, that some sellers are selling the same product. This
imposes a particular (separable) structure on W. We can define a “‘standard”
utility function which takes into account the fact that some outputs are the
same commodity. If there are / commodities (in the usual sense / < N), we
can define utility function U: R} — R such that:

n' n'+n? N
W(x)=U 2)(1, E Xi... Zx,-
i=1 i=n'
where there are n/ sellers in the jth market.

In the next section we derive the contingent demand correspondence
under this and other specific assumptions. More particularly, we relate it to
the standard Marshallian demand function. Having thus expressed the
contingent demand function in terms of the standard Marshallian demand
functions, we are able to consider its properties more closely. '

III TrRUE CONTINGENT DEMAND AS HOUSEHOLD CONTINGENT DEMAND WHEN

UNRATIONED IN OTHER MARKETS

In the previous section, we explored a general formulation of the
contingent demand correspondence, noting its similarity to the Benassy
formulation of effective demands. We now consider a special case of the
general formulation, assuming that the N sellers can be subdivided into /
markets (/ =< N), so that in each market the same commodity is sold. As a
reference point, we consider the standard Marshallian demand, which is
derived under the assumption that there is one seller per commodity, and no
rationing. Defining the household’s utility function over these /
commodities, U: R! — R, programme (2.1) — (2.3) then simplifies to the
standard textbook Marshallian demand optimization:

max uxy (3.1)
XER/
s.t. pX<sm L (3.2)

where p is the /-vector of prices in each “‘market”. For the rest of the paper
we shall assume that U is strictly quasi-concave, so that we can write the
solution as a function of the constraint parameters,
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X = x"(p, m) E*:RF—RE s (3.3)
In what follows, we shall suppress the prices in other markets (p-;), and
write the solution value x; as a function of p;and m, x™ (p;, m) (dropping the
subscript when convenient).

Starting from this standard Marshallian demand, we can derive a
special case of the household’s contingent demand which can be expressed in
terms of the Marshallian demand (3.3) and which we shall denote the
household’s ““True Contingent Demand™, TCD. We simply allow for the
case of two sellers in the jth market (this is easily generalized to n-sellers),
and assume that there is no (binding) rationing constraint in the other
markets. To formalize this we need to reindex the sellers, so that subscript kj
is the kth seller in market j. Formally we have:

Assumption (TCD):
(A1) There are two sellers in the jth market, and one seller in markets
i # j (or, equivalently, only one price set ).
(A2) When deriving the contingent demand in market j, the constraints
x¢, are non-binding for all i # j.
A1 enables us to drop the k subscript in the “other’” markets i # J.

We now state the problem which the household solves in formulating its
contingent demand for seller 1 in market j under Al, A2. Letp_;and x_; be
the / — 1 vectors of the price and quantities in markets other than j. The
household then solves: ’

max U(x,; + xy, x_)) R — (3.4)

X1jy X2jp X—j

St Py Xyt Pyt R Xm0 s (3.5)
xU =0 -~ (36)
x_;=0 S ——— (3.7)

x3 = x5 =0 G (3.8)

(3.5) is simply the standard budget constraint except that we split up the
household’s expenditure on commodity j into its expenditure on seller 1 and
2’s outputs.

The contingent demand for seller 1 is the solution to (3.4) — (3.8). We
consider the solution under three cases (dropping the j subscript on p,; and
P 2}) :

(a) pi<p..

Here, since the household ignores any constraint on seller 1's
output, the solution is x";_j = (0, and seller 1's contingent demand is
equal to the Marshallian demand at p,.

(b) pi=pa

The total demand for commodity j is equal to the Marshallian

demand: the household is indifferent between the two sellers.
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Contingent demand will thus be multivalued.
D](pl' P2 xg) = [max [01 xm(pl! m) a xg]! xm(pl! m)]
(c) pi>p>.
This is the more interesting case. The householder will buy from
seller 1 only if he cannot obtain all he desires from seller 2 (i.e.,
x9 < x™(p,, m)). If this is so, then we can rewrite (3.4) —(3.8) as:

max Uxy+x3,x5) (3.9)
xu', X_J.
prxjt+p_j.x-j<m-—-p,.x3 .. (3.10)

plus the usual non-negativity constraints. This reformulation reflects
the fact that we know x3; = x3. We can rewrite the budget constraint
(3.10):
pr.(xjj+x)+p_jxjsSm+(p,—py).xd . (3.11)
But maximizing (3.9) subject to (3.11) simply yields the Marshallian
demand evaluated at (p,, m + (p, — p.). x9). Hence the contingent
demand for seller 1 if p, > p, is:
D(py, py x3) = max[0, x™(p,, m + (p, — p1). x3) — x8
The “max” is introduced to reflect the non-negativity constraints.
Putting together cases (a) — (c), seller 1’s contingent demand under Al
and A2, its True Contingent Demand, has the form:
max[0, x"(p,, m+ (p; = p2)-x3) = x4] p1>p;
Di(Pi:Pz: x%) m) :{ [max[O,xm(p,, m) G x‘ﬂ], xm(pls m)] P1=DP2
xX"(p,,m)- P1<Pp:

This is depicted in Fig. 2. The logic behind case (c) (i.e., p, > p,) is quite
intuitive. Since the household has been able to purchase a quantity x9 at a
lower price p:, this acts as a “‘subsidy” if we evaluate the budget constraint
assuming that all purchases of commodity j (x,; + x;;) are purchased at p,.
The logic of the two-seller case clearly goes through to the case of n; sellers.
If the ith seller sets price p;, then the “‘subsidy effect” augments the income
termby > (pi— pi).xd
Pk <Pi

The rigorous derivation of the household’s contingent demand is useful
since it gives us the simple TCD specification of contingent demand, which
rests on explicit microfoundations (in the next section we show how it can be
extended to the case of many households). Furthermore the TCD
specification enables us to analyse the properties of contingent demand in
terms of standard consumer theory. To turn to the third reason, we can
decompose the effects of a rise in price on contingent demand using the
Slutsky decomposition. Suppose that p, > p,and D, (p,,p,, x3) > 0. Then
from (3.12) we have, using the Slutsky decomposition:
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oD, _ ox" Ox™ dy

= = e 3.13

op, ©Op,|Uo 9y dp, ( )
where y is income m + (p, — p,).x%, so that dy/dp, = — x|}. Hence:

3D, _ oxm 3xm

— == —_——D: 3.14

op, 9p,|Uy Oy : ( )
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Pi

x™(p;, m+ (p; — p2)-x3) — x§

P: s il

xm(p IB] lTl)

OUTPUT é

Fg. 2
Seller 1’s Contingent Demand under A2.2, A2.3

where derivatives of x™ are evaluated at (p,, m + (p, — p,).x}). If we
compare (3.14) with the slope of the Marshallian demand, we can see that
the income effect of the price change is smaller in the case of contingent
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demand than in the standard Marshallian case, since D, = x™ — x%. The rise
in p, does not generate any income effect via the quantity x{ purchased from
the lower-priced seller, and hence the income effect of price changes is
dampened for the higher-priced seller.

The TCD specification also provides a possible rationale for the CCD
specification of contingent demand. Recalling equation (1.3), and
comparing this standard CCD specification with (3.12) above, whenp, > p,,
we can interpret CCD in terms of a household’s contingent demand
compensated for the “‘subsidy effect”. If we equate the industry demand
functions (given some suitable m) so that for all p, F(p) = f(p,m), then by the
Mean Value Theorem we have:

fp m + By = pa)xt) = Fpi) + 301 = pa).xs

where the derivative 9f/dy is evaluated at some income y between m and
m + (p, — p,).x3. CCD can either be treated as an approximation to the
TCD, or as an exact expression when income effects are compensated or
absent. There remains, however, an important difference between CCD
and household TCD when p, = p,. Under CCD there is (usually) an *“‘equal
shares’ distribution of demand between sellers setting the same price. Aswe
show in Dixon (1984), the assumption of equal shares can be of crucial
importance, although there is no good reason for it suggested with the
framework presented. However, so far as the theory of ‘household
contingent demand is concerned, contingent demand will be multivalued
when firms set the same price.

This section has presented a special case of the household contingent
demand as outlined in Section II, giving rise to the TCD specification. This
has been useful since it has enabled us to relate contingent demand to the
more familiar and standard Marshallian demand. The approach of this
section is in fact less restrictive than is suggested by Al and A2. We can
replace the assumption that there is no rationing in other markets (A2) to
allow for rationing in other markets. This can be done using the framework
employed in Neary and Roberts (1980), replacing the Marshallian demand
by its constrained version. Although it is rather more intricate to analyse,
the results are similar.

So far we have considered the contingent demand of one household
facing two sellers. This is a rather special case. However, it is worth
considering when the contingent demand in a market with many buyers will
have the same form as the TCD or CCD specification. The vital new
ingredient that is introduced when we look at aggregate contingent demand is
the rationing regime which operates in the market when there is excess
contingent demand for a particular seller. In order to obtain the TCD or CCD
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specifications of contingent demand there must be a Proportional Rationing
(PR) mechanism. Under PR, if there is excess contingent demand for a
particular seller or group of sellers setting the same price, then each household
receives a certain proportion of its contingent demand, that proportion being
determined so as to equate purchase with supply. PR is manipulable, since any
household can obtain more if it asks for more. However, in the case of
identical households, PR is equivalent to the rule where each household
receives an Equal Share (ES) of available output, which is a non-
manipulable rationing scheme. Let the contingent demand of household h
for seller j be denoted Dy, which will be given by the household’s contingent
demand as formulated in equation (3.12). The proportion of their demands

which households receive equates supplies Z x¥with demandz Dyj. We
Pi=P; H
can denote this proportion k;:

k=min 1,[(2 x>Dy)] . (3.15)
Pi=p H

We include the min condition to cover the case where there is excess supply
(£Dpj < Z x¥). Thus the actual purchase of 4 from seller j (or from sellers
setting p; = pj) 1S Xy = k;.Dpi. With identical households and ES,
K;i=1/#H.

If we take the case where p, > p, again, and assume that Dy, > 0,
summing over household demands (3.12) using (3.15) yields: '

Dy(py, P2 xY) = 2 xa(py, ma+ (P — p2)-%n2)l — X3 ......(3.16)
H

Comparing (3.16) with (3.12), under PR or ES the market contingent
demand is just like the individual household’s contingent demand “‘blown
up”. The TCD specification of contingent demand will therefore remain
valid at the aggregate level under PR and ES, and the properties of the
individual household’s contingent demand will carry over to the market
contingent demand. Therefore the same comments relating to the
“weakened” income effect of the contingent demand relative to the
Marshallian hold here as well in the individual’s case.

IV  MARKET CONTINGENT DEMAND: FIRST-COME-FIRST-SERVE

In this section we consider the market contingent demand when there is
first-come-first-serve rationing of households under excess demand. Under
FCFS rationing, only some subset s of the set of households H is served, and
of this subset all but perhaps one marginal member receives all that they
want at that price. This rationing scheme is more attractive than PR in that it
1s non-manipulable, and also more realistic in that most households will buy
a commodity from only one seller. If we again consider the two-seller case,



298 The Manchester School

where p, > p,, and x9% < Zxx(p,, mn), we can define the corresponding class §
of sets s of households which can be served by seller 2 under FCFS.? Note
that under FCFS all but perhaps the last household served will be able to buy
as much as they want. The contingent demand for the higher priced seller 1
then consists of the sum of the Marshallian demands of customers not served
at all by seller 2 (h € H~—s), plus the contingent demand of the marginal
customer only partly satisfied by seller 2. Hence:

Dilpns s = HZ"’“(P" mp) + 2 Di(py, P X3) e (4.1)
—3 5

where Dy = 0 for all but at most one member of s, the last to be served by
the lower-priced seller.

If there is excess demand for a particular seller, then there may be many
possible subsets of households which could be served by the lower-priced
seller. We can either assume that FCFS operates with a deterministic rule,
which picks out which households will be served, or that it operates
randomly. We shall turn first to the properties of FCFS with a deterministic
selection mechanism, which is usually explored using the special “‘unit
demand” demand curve originating in Morgenstern (1948, p. 177), where:
‘“ ... the aggregate demand curve involves a large number of buyers, each of
whom desires only one unit, all (or most) having different maximum bids for
it, but each willing to buy one unit at any price below this maximum. Each
lower bid is added to all the previous bids”. Following subsequent usage
(e.g., Shubik, 1955; Gelman and Salop, 1983) we shall call Morgenstern’s
“maximum bid”’ the household’s reservation price, rx.

The industry demand function F(p) can be written as:

F(p) = ; why (4.2)

where y,(h) is the characteristic function of the set h : r, < p , which takes
the value 1 if ry < p, zero otherwise. One popular serving scheme is that
those households with the highest reservation prices are served first (this is
called ‘“‘reservation price rationing” by Gelman and Salop, 1983). Suppose
for ease that x$ is an integer, then the customers served are those with a
reservation price greater than or equal to g where:

Eyglh)=2% e (4.3)
(thus g is the price at which industry demand is equal to x3). Then the
contingent demand of seller 1 (p, > p,) is:

; %p,(h) — ; ¥eh)=Fp)—x8 . (4.4)

Thus firm 1’s contingent demand consists of the demands of those
consumers with g = ry = p,, and (4.4) is the familiar CCD specification of

30f course, S depends on p; and x9.
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contingent demand. Thus CCD can arise from FCFS rationing if consumers
have Morgenstern unit demands and consumers with the highest price are
served first.

Another possible rule to determine who gets served has been suggested
by Shubik: namely that households are chosen to maximize the residual
demand at higher prices (1955, p. 419, convention 3). This is equivalent to
choosing those customers wishing to be served who have the lowest
reservation prices (‘‘lowest first™). The lower-priced seller 2 sets price p,, so
that if p, > p, he will sell x9 units to the first x§ customers with reservation
prices over p,. Suppose that the last customer then served has a reservation
price ¢, then the residual demand for the higher-priced seller 1 is:

min [F(t), Fey)) Ll (4.5)
If p, < p, <1, seller 2’s contingent demand is thus F(?): if p, = ¢, then
contingent demand is given by F(p,). Clearly, the “lowest first” rationing
rule has rather different implications to the conventional “‘highest first”. We
depict them side-by-side in Fig. 3.

Whilst the exact nature of the deterministic rationing rule makes a big
difference to the resultant contingent demand, there is no obvious criterion
to choose between them.* If we view the customer’s place in the queue as a
result of “market effort”, then there is no necessary relationship between
the reservation price and the disutility of market effort (see Coase, 1934, p.
138). Perhaps if we interpret market effort as leisure foregone, and leisure as
a normal good, then it seems plausible that lower income households would
have a lower-reservation price and make more market effort than higher-
income households. This line of speculation points towards the “lowest
first” rule. However, if we abandon the drastic simplification of
Morgenstern unit demands, it is not at all clear how we might formulate a
simple deterministic rationing rule. In the context of our model, which
excludes search and transaction costs, it sesems more natural to assume that
FCFS operates randomly. It is this possibility to which we next turn.

As Coase commented, under FCFS: “The demand for A’s product can
be obtained by adding together the demand curves of those individuals who
are excluded from purchasing from B. The individuals who are excluded,
however, depend on chance. Therefore, the demand curve for A’s product
depends on chance” (Coase, 1934, p. 138). This randomness has largely
been ignored in the literature, as a nuisance to be assumed away rather like

“Note that with Equal Shares and unit demands, contingent demand is given by the ED
specification. Hence with unit demands ES yields ED, and FCFS can yield CCD: this is the
reverse of what holds when households have standard demand functions (ES/PR yield
CCD, and FCFS can give rise to ED). Thus the relationship between rationing mechanism
and the resultant contingent demand depends very much upon the type of consumer
demand which is assumed.



Price
Pi

A\ N %
o

&Z— min F(p,), F(t)

I
|
|

OUTPUT

r
x2 OUTPUT

(a) Highest first (CCD) - (b) Lowest first

Fig. 3
FCFS — Two Alternative Rationing Rules

100YIS 421SIYIUD N Y



The General Theory of Household and Market, etc. 301

an integer problem. One obvious way to make such randomness harmless is to
assume that households are identical, so that it makes no difference who gets
served first. This assumption was made by Edgeworth (1897) and has been
made since (d’Aspremont and Gabszewicz, 1980). Alternatively, it has been
more common to assume that the contingent demand is an expectation,
assuming that each household is equally likely to be served (see Shubik, 1955,
p. 420; Bekman, 1966, p. 55; and Gelman and Salop, 1983). How valid is it to
treat the contingent demand function as an expectation? If a higher-priced
seller’s payoffs depend upon the actual set s of consumers served by a
lower-priced seller, then in general Jensen’s inequality tells us that
maximizing the expected payoff will be equivalent to maximizing the payoff
given the expected realization of demand only if the payoff is linear in the
realization of demand. In a Bertrand model with constant unit costs, profit-
per-unit output sold is constant given the price set, so that there is no problem.
However, in the case considered in Dixon (1984, 1987), where firms’ costs can
be strictly convex, it will be invalid to treat the contingent demand as an
expectation, since profits are then strictly concave in the realization of
demand. Whilst we can avoid randomness by assuming households to be
identical, or by treating contingent demand as an expectation, the former
approach is rather restrictive whilst the latter is not generally applicable.

If we recall the expression for the contingent demand under FCFS
rationing in (4.1), and compare it to the ED specification (1.2), we can see
that two conditions must hold if the two expressions are to be equivalent for
all s: first, there is no marginal customer (for alls e S, D, = O forall h €5),
and, secondly, that forall s € §,

@1 1) = Santprs )| 1~

xp(py, my) = Sxu(py,mp) | 1 —=———mm—
HZ_S w\P1, My HZ wP h S, ma)
H

We can ensure the absence of a marginal customer if we assume a continuum
of consumers (more precisely an atomless measure space of households).
Equation (4.6) will certainly not hold generally since if households are not

identical, then . x, will vary with s.
H-s

In fact, it turns out that we can weaken the requirement that all
households need to be identical to have a non-random contingent demand
under FCEFS. If households have identical homothetic preferences, then
whatever the distribution of money balances m, across households, then
(4.6) will be satisfied if there is no “‘marginal’” customer. The reasoning
behind this is that if preferences are homothetic, then demand of households
1s proportional to money balances. Thus all the possible sets s € § of
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households that might be served by the lower-priced seller will have the
same total money balances. Hence whichever set of households is served by
the lower-priced customer, the total income of those left over to be served by
seller 1 will be the same.
If preferences are identical and homothetic, we can write the

Marshallian demand of any group of customers g € H as:

th(p, m;,) = b(p) 3 Z m, . (47)

heg g
If we consider the class of sets s which may be served by the lower-priced
seller 2:

b(py). > my=xy forallseS . (4.8)
5
From (4.7) and (4.8) we can derive the first seller’s contingent demand:
x4
S xu(pi my) = b(py). Sy |1 - =l (4.9)
H-s H b(p1). Zxp(pa my)

which is the non-random ED specification given in (1.2), since industry
demand is b(p). Zx,(p, m). Thus if households have identical homothetic
preferences, and there are no “‘marginal customers”, then whichever set of
households is served the higher-priced firm faces the same contingent
demand as in the ED specification. There is thus no difference in terms of
contingent demand between FCFS rationing under alternative deterministic
rules and random rationing. Whilst the assumption of identical homothetic
preferences is restrictive, it surely provides a more satisfactory solution to
the problem than taking expectations or introducing ad hoc deterministic
rules, as is usual in the literature.

V  CoNCLUSION

This paper provides a general framework for understanding the theory
of contingent demand, both at the level of the individual household and the
market. We have provided a general formulation for the household’s
contingent demand, adapting the standard theory of consumer demand
under rationing. This allows a formal analysis of income and substitution
effects on contingent demand. Using the Slutsky decomposition reveals that
income effects are weaker with contingent demand compared with standard
Marshallian demands.

At the level of the market, the rationing mechanism becomes all
important, since it determines ¢xactly who gets served what by the lower-
priced seller, and hence the nature of the residual demand left over for the
higher-priced seller. Since Edgeworth’s original paper, the most common
assumption has been the all-or-nothing rule of FCFS. The main issue that
FCFS raises is that the contingent demand for the higher-priced seller
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depends on who gets served first. We have shown that if households have
identical homothetic preferences, then contingent demand will not depend
on exactly who gets served first. Furthermore, the resultant formula for
market contingent demand is the original ED specification.

An alternative to FCFS is provided by rationing mechanisms that give
something to everyone — PR or ES. With equal shares rationing and
identical households, market contingent demand becomes the constituent
household’s demand writ large. The theory of household contingent
demand carries over to the market level. This type of rationing can be seen
as giving rise to the CCD specification of contingent demand originating in
Levitan and Shubik (1972).
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